已知函數(shù).
(Ⅰ)若在上的最大值為,求實(shí)數(shù)的值;
(Ⅱ)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.
(Ⅰ).(Ⅱ).
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線 上總存在兩點(diǎn),,使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上.
【解析】
試題分析:(Ⅰ)由,得,
令,得或.
當(dāng)變化時(shí),及的變化如下表:
|
- |
+ |
- |
|||
↘ |
極小值 |
↗ |
極大值 |
↘ |
由,,,
即最大值為,. 4分
(Ⅱ)由,得.
,且等號(hào)不能同時(shí)取,,即
恒成立,即. 6分
令,求導(dǎo)得,,
當(dāng)時(shí),,從而,
在上為增函數(shù),,. 8分
(Ⅲ)由條件,,
假設(shè)曲線上存在兩點(diǎn),滿足題意,則, 只能在軸兩側(cè),
不妨設(shè),則,且.
是以為直角頂點(diǎn)的直角三角形,,
,
是否存在,等價(jià)于方程在且時(shí)是否有解. 10分
①若時(shí),方程為,化簡(jiǎn)得,此方程無(wú)解;
②若時(shí),方程為,即,
設(shè),則,
顯然,當(dāng)時(shí),,
即在上為增函數(shù),
的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013071712000377476278/SYS201307171200538564614521_DA.files/image070.png">,即,當(dāng)時(shí),方程總有解.
對(duì)任意給定的正實(shí)數(shù),曲線 上總存在兩點(diǎn),,使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上. 14分
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值。
點(diǎn)評(píng):難題,在給定區(qū)間,導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù),導(dǎo)數(shù)非正,函數(shù)為減函數(shù)。涉及“不等式恒成立”問(wèn)題,往往通過(guò)構(gòu)造函數(shù),轉(zhuǎn)化成求函數(shù)的最值問(wèn)題,利用導(dǎo)數(shù)加以解決。本題(III)需要分類討論,易于出錯(cuò),是叫男的一道題目。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù),其中且,若的圖象關(guān)于直線對(duì)稱,且的最大值為2.
⑴求和的值; ⑵如何由的圖象得到的圖象?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省青島市高三統(tǒng)一質(zhì)量檢測(cè)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù) ,,若對(duì)任意的,都有成立,則實(shí)數(shù)的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省德州市高三上學(xué)期1月月考考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(Ⅰ)若點(diǎn)在角的終邊上,求的值;(Ⅱ)若,求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆陜西省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求出這條切線的方程;
(Ⅱ)若,討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)對(duì)任意的,恒有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省第二學(xué)期高二月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(Ⅰ)若曲線在處的切線方程為,求實(shí)數(shù)和的值;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)若,且對(duì)任意,都有,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com