函數(shù)y=f(x)在區(qū)間A上是增函數(shù),且對(duì)任意x1,x2∈A有f(x1)<f(x2),則x1,x2的大小關(guān)系為
x1<x2
x1<x2
分析:直接利用函數(shù)的單調(diào)性的定義可得x1,x2的大小關(guān)系.
解答:解:由于函數(shù)y=f(x)在區(qū)間A上是增函數(shù),且對(duì)任意x1,x2∈A有f(x1)<f(x2),
則x1,x2的大小關(guān)系為 x1 <x2
故答案為  x1 <x2
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•花都區(qū)模擬)已知函數(shù)y=f(x)在定義域[-4,6]內(nèi)可導(dǎo),其圖象如圖,記y=f(x)的導(dǎo)函數(shù)為y=f′(x),則不等式f′(x)≥0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•順義區(qū)一模)已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1,其中a,b滿(mǎn)足
a+b-6≤0
a>0
b>0
則函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•青浦區(qū)一模)我們把定義在R上,且滿(mǎn)足f(x+T)=af(x)(其中常數(shù)a,T滿(mǎn)足a≠1,a≠0,T≠0)的函數(shù)叫做似周期函數(shù).
(1)若某個(gè)似周期函數(shù)y=f(x)滿(mǎn)足T=1且圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng).求證:函數(shù)f(x)是偶函數(shù);
(2)當(dāng)T=1,a=2時(shí),某個(gè)似周期函數(shù)在0≤x<1時(shí)的解析式為f(x)=x(1-x),求函數(shù)y=f(x),x∈[n,n+1),n∈Z的解析式;
(3)對(duì)于確定的T>0且0<x≤T時(shí),f(x)=3x,試研究似周期函數(shù)函數(shù)y=f(x)在區(qū)間(0,+∞)上是否可能是單調(diào)函數(shù)?若可能,求出a的取值范圍;若不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•花都區(qū)模擬)已知函數(shù)y-f(x)在定義域[-4,6]內(nèi)可導(dǎo),其導(dǎo)函數(shù)y=f′(x)的圖象如圖,則函數(shù)y=f(x)的單調(diào)遞增區(qū)間為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•奉賢區(qū)一模)函數(shù)y=f(x),x∈R滿(mǎn)足f(x+1)=af(x),a是不為0的常數(shù),當(dāng)0≤x≤1時(shí),f(x)=x(1-x),
(1)若函數(shù)y=f(x),x∈R是周期函數(shù),寫(xiě)出符合條件a的值;
(2)求n≤x≤n+1(n≥0,n∈Z)時(shí),求y=f(x)的表達(dá)式y(tǒng)=fn(x);
(3)若函數(shù)y=f(x)在[0,+∞)上的值域是閉區(qū)間,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案