函數(shù)處取到極值,則的值為(   )
A.B.C.D.
B
解:由題意得f′(x)="a" x +1
因?yàn)楹瘮?shù)f(x)=alnx+x在x=1處取得極值,
所以f′(1)=0,即a+1=0,所以a=-1.
故答案為-1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地區(qū)的一種特色水果上市時(shí)間僅能持續(xù)5個(gè)月,預(yù)測上市初期和后期會因供不應(yīng)求使價(jià)格呈連續(xù)上漲態(tài)勢,而中期又將出現(xiàn)供大于求使價(jià)格下跌.現(xiàn)有三種價(jià)格模擬函數(shù):①;②;③.(以上三式中均為常數(shù),且
(1)為準(zhǔn)確研究其價(jià)格走勢,應(yīng)選哪種價(jià)格模擬函數(shù),為什么?
(2)若,,求出所選函數(shù)的解析式(注:函數(shù)的定義域是).其中表示4月1日,表示5月1日,…,依此類推;
(3)為保護(hù)果農(nóng)的收益,打算在價(jià)格下跌期間積極拓寬外銷,請你預(yù)測該果品在哪幾個(gè)月內(nèi)價(jià)格下跌.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),,又函數(shù)單調(diào)遞減,而在單調(diào)遞增.
(1)求的值;
(2)求的最小值,使對,有成立;
(3)是否存在正實(shí)數(shù),使得上既有最大值又有最小值?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)上單調(diào)遞增,在上單調(diào)遞減,在上遞增,則的值為(   )
A.B.C.D.[

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在區(qū)間上的最大值是(  )
A.B.0C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,且函數(shù)處有極值,則的最大值等于
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)有絕對值相等,符號相反的極大值和極小值,則常數(shù)的值是(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果x、y∈R,且+=1,那么(1-xy)(1+xy)有(  )
A.最小值和最大值1 B.最小值和最大值1
C.最小值無最大值 D.最小值無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),若,且 對任意恒成立,則的最大值為_________.

查看答案和解析>>

同步練習(xí)冊答案