已知圓C:x2+y2+2x-4y+3=0;
(1)若圓C的切線在x軸,y軸上的截距相等,求此切線方程;
(2)求圓C關(guān)于直線x-y-3=0的對稱的圓方程
(3)從圓C外一點(diǎn)P(x1,y1)向圓引一條切線,切點(diǎn)為M,O為原點(diǎn),且有|PM|=|PO|,求使|PM|最小的P點(diǎn)的坐標(biāo).
分析:(1)求出圓心和半徑,設(shè)直線方程為x+y-a=0或y=kx,由圓心C到切線的距離等于半徑,求出待定系數(shù)a和k的值,即可得到所求切線方程;
(2)求出圓心關(guān)于直線x-y-3=0 的對稱點(diǎn)坐標(biāo),而對稱圓的半徑和已知圓的半徑相等,由圓方程的一般式即可求出對稱圓的方程;
(3)由切線的性質(zhì)得到△PCM為直角三角形,利用勾股定理得|PC|2=|PM|2+r2,由|PM|2=|PO|2利用兩點(diǎn)間的距離公式化簡可得點(diǎn)P的軌跡為2x1-4y1+3=0,再求得原點(diǎn)在直線2x-4y+3=0上的射影點(diǎn),即得使|PM|最小的P點(diǎn)的坐標(biāo).
解答:解:(1)圓C:x2+y2+2x-4y+3=0即(x+1)2+(y-2)2=2,
表示圓心為C(-1,2),半徑等于
2
的圓.
設(shè)斜率為-1的切線方程為x+y-a=0,過原點(diǎn)的切線方程為kx-y=0,
則圓心C到切線的距離等于半徑,
可得:
2
=
|-1+2-a|
2
,求得a=-1或3.
再由
2
=
|-k+2|
k2+1
,求得k=2±
6

故所求的切線的方程為x+y-3=0或x+y+1=0或y=(2±
6
)x;
(2)由(1)圓C(x+1)2+(y-2)2=2的圓心在(-1,2),半徑等于
2

∵點(diǎn)P(m,n)關(guān)于直線x-y-3=0的對稱的點(diǎn)為P'(n+3,m-3)
∴點(diǎn)(-1,2)關(guān)于直線x-y-3=0對稱的點(diǎn)的
坐標(biāo)為(2+3,-1-3)即(5,-4),
故圓C關(guān)于直線x-y-3=0的對稱的圓方程是 (x-5)2+(y+4)2=2;
(3)設(shè)P的坐標(biāo)為(x,y)
由于|PC|2=|PM|2+|CM|2=|PM|2+r2,
∴|PM|2=|PC|2-r2
又∵|PM|=|PO|,∴|PC|2-r2=|PO|2,
∴(x1+1)2+(y1-2)2-2=x12+y12
∴2x1-4y1+3=0即為動點(diǎn)P的軌跡方程.
∵原點(diǎn)在直線2x-4y+3=0上的射影點(diǎn)為(-
3
10
3
5
),
∴使|PM|最小的P點(diǎn)的坐標(biāo)為(-
3
10
,
3
5
).
點(diǎn)評:本題給出圓的方程,求圓在軸上截距相等的切線方程和圓關(guān)于直線對稱的圓的方程.著重考查了直線的方程、圓的方程和直線與圓的位置關(guān)系等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個焦點(diǎn)和頂點(diǎn),則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負(fù)半軸的交點(diǎn)為A.由點(diǎn)A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點(diǎn)B.
(1)當(dāng)r=1時,試用k表示點(diǎn)B的坐標(biāo);
(2)當(dāng)r=1時,試證明:點(diǎn)B一定是單位圓C上的有理點(diǎn);(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點(diǎn)為有理點(diǎn).我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實(shí)半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實(shí)半軸長、虛半軸長和半焦距的長恰可由點(diǎn)B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
x
a
y
b
=1
與圓C有公共點(diǎn),且公共點(diǎn)都為整點(diǎn)(整點(diǎn)是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點(diǎn)),那么直線l共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習(xí)冊答案