設(shè)f(n-1)=x+x2+…+xn,且f(x)的展開式中所有項(xiàng)的系數(shù)和為An,則的值為
A.2
B.
C.
D.-2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:湖北省荊門市實(shí)驗(yàn)高中2008屆高三八月摸底測試(數(shù)學(xué)理) 題型:044
設(shè)函數(shù)f(x)的定義域是R,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)f(n),
且當(dāng)x>0時(shí),0<f(x)<1.
(1)求證:f(0)=1,且當(dāng)x<0時(shí),有f(x)>1;
(2)判斷f(x)在R上的單調(diào)性;
(3)設(shè)集合A={(x,y)|f(x2)f(y2)>f(1)},集合B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:選修設(shè)計(jì)數(shù)學(xué)1-2北師大版 北師大版 題型:022
設(shè)f(x)=,計(jì)算f(0)+(1),f(-1)+f(2)的值,猜想f(-n)+f(n+1)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:南師附中2008-2009學(xué)年度高三一輪復(fù)習(xí)數(shù)學(xué)試題 題型:044
已知二次函數(shù)f(x)=x2-ax+a(x∈R)同時(shí)滿足:①不等式f(x)≤0的解集有且只有一個(gè)元素;②在定義域內(nèi)存在0<x1<x2,使得不等式f(x1)>f(x2)成立.設(shè)數(shù)列{an}的前n項(xiàng)和Sn=f(n).
(1)求f(x)表達(dá)式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè),,{cn}前n項(xiàng)和為Tn,Tn>n+m對(duì)(n∈N*,n≥2)恒成立,求m范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省長葛市第三實(shí)驗(yàn)高中2011屆高三上學(xué)期第一次考試文科數(shù)學(xué)試題 題型:044
設(shè)函數(shù)f(x)的定義域是R,對(duì)于任意實(shí)數(shù)m,n,恒有f(m+n)=f(m)f(n),且當(dāng)x>0時(shí),0<f(x)<1.
(1)求證:f(0)=1,且當(dāng)x<0時(shí),有f(x)>1;
(2)判斷f(x)在R上的單調(diào)性;
(3)設(shè)集合A={(x,y)|f(x2)f(y2)>f(1)},
集合B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com