(本題滿分14分)

某車間有200名工人,要完成6000件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3個(gè)型零件和1個(gè)型零件配套組成.每個(gè)工人每小時(shí)能加工5個(gè)型零件或者1個(gè)型零件,現(xiàn)在把這些工人分成兩組同時(shí)工作(分組后人數(shù)不再進(jìn)行調(diào)整),每組加工同一種型號(hào)的零件.設(shè)加工型零件的工人人數(shù)為名().

(1)設(shè)完成型零件加工所需時(shí)間為小時(shí),完成B型零件加工所需時(shí)間為小時(shí),寫出,的解析式;

(2)當(dāng)A、B兩種零件全部加工完成,就算完成工作.全部完成工作所需時(shí)間為小時(shí),寫出的解析式;

(3)為了在最短時(shí)間內(nèi)完成工作,應(yīng)取何值?

解:(1),   ……………………………… 2分

。                  ………………………………  4分

(2)令

            ………………………………   9分

(3)即求函數(shù)的最小值。當(dāng)時(shí),,當(dāng)時(shí),,故當(dāng)時(shí)的最小值為

綜上,為了在最短時(shí)間內(nèi)完成工作,應(yīng)取。        ………………………………  14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點(diǎn)P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實(shí)數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時(shí)x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABEAEEBBC=2,上的點(diǎn),且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值

(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點(diǎn)是⊙上的任意一點(diǎn),過垂直軸于,動(dòng)點(diǎn)滿足。

(1)求動(dòng)點(diǎn)的軌跡方程; 

(2)已知點(diǎn),在動(dòng)點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請(qǐng)說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請(qǐng)求出一個(gè)長(zhǎng)度為的區(qū)間,使

;如果沒有,請(qǐng)說明理由?(注:區(qū)間的長(zhǎng)度為).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案