【題目】已知函數(shù)()是奇函數(shù).

(1)求實數(shù)的值;

(2)用函數(shù)單調性的定義證明函數(shù)上是增函數(shù);

(3)對任意的,若不等式恒成立,求實數(shù)的取值范圍.

【答案】(1)-1 (2)證明見解析 (3)

【解析】

(1) 由條件利用奇函數(shù)的定義 ,可得結論.
(2) 直接由函數(shù)單調性的定義加以證明;在定義域上任取兩個變量,且界定大小再作差變形看符號.
(3),結合函數(shù)為奇函數(shù),則可以化為,再結合(2)中函數(shù)的單調性可解出結果.

(1)解:∵函數(shù)()是奇函數(shù),

.

..

(2)證明:(1),可得設任意的,,

,,.

,. .

..

所以函數(shù)上是增函數(shù)

(3)由(2),可知.

是奇函數(shù),.

等價于

∵函數(shù)上是增函數(shù).

上恒成立.

上恒成立.

所以上恒成立.

所以,則只需即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,平面平面ABE,四邊形ABCD為矩形,,FCE上的點,且平面ACE.

1)求證:;

2)設M在線段DE上,且滿足,試在線段AB上確定一點N,使得平面BCE,并求MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為2的菱形,,,且,.

(1)求證:

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從拋物線上任意一點Px軸作垂線段,垂足為Q,點M是線段上的一點,且滿足

(1)求點M的軌跡C的方程;

(2)設直線與軌跡c交于兩點,TC上異于的任意一點,直線,分別與直線交于兩點,以為直徑的圓是否過x軸上的定點?若過定點,求出符合條件的定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下是新兵訓練時,某炮兵連周中炮彈對同一目標的命中的情況的柱狀圖:

(1)計算該炮兵連這周中總的命中頻率,并確定第幾周的命中頻率最高;

(2)以(1)中的作為該炮兵連甲對同一目標的命中率,若每次發(fā)射相互獨立,且炮兵甲發(fā)射次,記命中的次數(shù)為,求的方差;

(3)以(1)中的作為該炮兵連炮兵對同一目標的命中率,試問至少要用多少枚這樣的炮彈同時對該目標發(fā)射一次,才能使目標被擊中的概率超過(取

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的所有零點的積為m,則有( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到定點和到直線的距離之比為,設動點的軌跡為曲線,過點作垂直于軸的直線與曲線相交于兩點,直線與曲線交于兩點,與相交于一點(交點位于線段上,且與不重合).

(1)求曲線的方程;

(2)當直線與圓相切時,四邊形的面積是否有最大值?若有,求出其最大值及對應的直線的方程;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)戶計劃種植萵筍和西紅柿,種植面積不超過畝,投入資金不超過萬元,假設種植萵筍和西紅柿的產(chǎn)量、成本和售價如下表:

年產(chǎn)量/畝

年種植成本/畝

每噸售價

萵筍

5噸

1萬元

0.5萬元

西紅柿

4.5噸

0.5萬元

0.4萬元

那么,該農(nóng)戶一年種植總利潤(總利潤=總銷售收入-總種植成本)的最大值為____萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,設點,(其中表示ab中的較大數(shù))為、兩點的切比雪夫距離”.

1)若Q為直線上動點,求PQ兩點切比雪夫距離的最小值;

2)定點,動點滿足,請求出P點所在的曲線所圍成圖形的面積.

查看答案和解析>>

同步練習冊答案