【題目】已知函數(shù)f(x)=|2x﹣1|+|2x﹣3|,x∈R.
(1)解不等式f(x)≤5;
(2)若不等式m2﹣m<f(x),x∈R都成立,求實數(shù)m的取值范圍.
【答案】
(1)解:原不等式等價于 ①,或 ②,或 ③.
解①求得 ,解②求得 ,解③求得 ,
因此不等式的解集為
(2)解:∵f(x)=|2x﹣1|+|2x﹣3|≥|2x﹣1﹣(2x﹣3)|=2,
∴m2﹣m<2,解得﹣1<m<2,
即實數(shù)m的取值范圍為(﹣1,2).
【解析】(1)原不等式等價于 ①,或 ②,或 ③.分別求得①、②、③的解集,再取并集,即得所求.(2)利用絕對值三角不等式求得f(x)的最小值為2,可得 m2﹣m<2,由此解得實數(shù)m的取值范圍.
【考點精析】根據(jù)題目的已知條件,利用絕對值不等式的解法的相關知識可以得到問題的答案,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PA=PC,底面ABC為正三角形.
(Ⅰ)證明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在一個邊長為1的正方形AOBC內,曲線y=x3(x>0)和曲線y= 圍成一個葉形圖(陰影部分),向正方形AOBC內隨機投一點(該點落在正方形AOBC內任何一點是等可能的),則所投的點落在葉形圖內部的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=lg(x+m)(m∈R);
(1)當m=2時,解不等式 ;
(2)若f(0)=1,且 在閉區(qū)間[2,3]上有實數(shù)解,求實數(shù)λ的范圍;
(3)如果函數(shù)f(x)的圖像過點(98,2),且不等式f[cos(2nx)]<lg2對任意n∈N均成立,求實數(shù)x的取值集合.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,C為銳角且asinA=bsinBsinC, .
(1)求C的大;
(2)求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知O為坐標原點,雙曲線 (a>0,b>0)的兩條漸近線分別為l1 , l2 , 右焦點為F,以OF為直徑作圓交l1于異于原點O的點A,若點B在l2上,且 =2 ,則雙曲線的離心率等于( )
A.
B.
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),圓Q:(x﹣2)2+(y﹣ )2=2的圓心Q在橢圓C上,點P(0, )到橢圓C的右焦點的距離為 .
(1)求橢圓C的方程;
(2)過點P作互相垂直的兩條直線l1 , l2 , 且l1交橢圓C于A,B兩點,直線l2交圓Q于C,D兩點,且M為CD的中點,求△MAB的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 =(cosα,sinα), =(cosβ,sinβ),其中0<α<β<π.
(1)求證: 與 互相垂直;
(2)若k 與 ﹣k 的長度相等,求β﹣α的值(k為非零的常數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com