已知函數(shù)f(x)=ln x-ax+1在x=2處的切線斜率為-.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=,對(duì)?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正實(shí)數(shù)k的取值范圍;
(3)證明: ++…+<(n∈N*,n≥2).
(1)即f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞).
(2)k≥1
(3)見(jiàn)解析
(1)解 由已知得f′(x)=-a,∴f′(2)=-a=-,解得a=1.
于是f′(x)=-1=,
當(dāng)x∈(0,1)時(shí),f′(x)>0,f(x)為增函數(shù),
當(dāng)x∈(1,+∞)時(shí),f′(x)<0,f(x)為減函數(shù),
即f(x)的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為(1,+∞).
(2)解 由(1)知x1∈(0,+∞),f(x1)≤f(1)=0,即f(x1)的最大值為0,
由題意知:對(duì)?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,
只需f(x)max≤g(x)max.
∵g(x)==x++2k=-+2k≤-2+2k,
∴只需-2 +2k≥0,解得k≥1.
(3)證明 要證明+…+<(n∈N*,n≥2).
只需證+…+<,
只需證+…+<.
由(1)當(dāng)x∈(1,+∞)時(shí),f′(x)<0,f(x)為減函數(shù),
f(x)=ln x-x+1≤0,即ln x≤x-1,
∴當(dāng)n≥2時(shí),ln n2<n2-1,
<=1-<1-=1-,
+…+<+…+=n-1-,
 ++…+<.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),
(1)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)在區(qū)間(0,1)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,不等式恒成立,則實(shí)數(shù)的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)矩形紙片ABCD的邊AB=6,AD=10,點(diǎn)E、F分別在邊AB和BC上(不含端點(diǎn)). 現(xiàn)將紙片的右下角沿EF翻折,使得頂點(diǎn)B翻折后的新位置B1恰好落在邊AD上. 設(shè),EF=l,l關(guān)于t的函數(shù)為.

試求:(1)函數(shù)f(t)的定義域;
(2)函數(shù)f(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的最大值為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)f(x)滿(mǎn)足x2f′(x)+2xf(x)=,f(2)=,則x>0時(shí),f(x)(  )
A.有極大值,無(wú)極小值
B.有極小值,無(wú)極大值
C.既有極大值又有極小值
D.既無(wú)極大值也無(wú)極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)上遞增,則的范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù),函數(shù),它們的定義域均為,并且函數(shù)的圖像始終在函數(shù)的上方,那么的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè),則、的大小關(guān)系是(     )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案