已知圓x2+y2=1和直線y=2x+b相交于A,B兩點,且OA,OB是x軸正方向沿逆時針分別旋轉α,β角而得,則cos(α+β)的值為( 。
A.
b+3
b2+5
B.
3
5
C.
3
b2+5
D.
3
5
|b|+15
5b2+25
x2+y2=1
y=2x+b
消去y得:5x2+4bx+b2-1=0,
設A(x1,y1),B(x2,y2),
則x1、x2是方程5x2+4bx+b2-1=0的兩根,
∴由韋達定理得:x1+x2=-
4b
5
,x1x2=
b2-1
5
,
∴y1y2=(2x1+b)(2x2+b)
=4x1x2+2b(x1+x2)+b2
=
4(b2-1)
5
-
8
5
b2+b2
=
b2-4
5
,
又cosα=x1,cosβ=x2,sinα=y1,sinβ=y2,
∴cos(α+β)=cosαcosβ-sinαsinβ
=x1x2-y1y2
=
b2-1
5
-
b2-4
5

=
3
5

故選:B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知.
(1)分別求的值;(2)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知向量互相垂直,其中
(1)求的值;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在△ABC中,sinA=4cosB•cosC,且tanB•tanC=3,
(1)求角A的余弦值;
(2)若角A所對的邊a長為4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)f(x)=sinx(1-2sin2
θ
2
)+cosxsinθ(0<θ<π)在x=π得最小值.
(Ⅰ)求θ的值;
(Ⅱ)在△ABC中,a,b,c別是角A,B,C的對邊,已知α=1,b=
3
,f(A)=
3
2
,求角C.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若點G為△ABC的重心(三角形三邊上中線的交點)且AG⊥BG,則cos(A+B)的最大值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=sin(x-
π
3
)+
3
cos(x-
π
3
).
(Ⅰ)求函數(shù)y=f(x)-1的單調遞增區(qū)間;
(Ⅱ)設函數(shù)g(x)=(1+sinx)f(x),求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若tanα,tanβ是方程2x2+6x+3=0的兩個實數(shù)解,則tan(α+β)的值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在銳角的范圍是( 。
A.(0,2)B.C.D.

查看答案和解析>>

同步練習冊答案