函數(shù)f(x)=
1
3
ax3+ax2+x+1
有極值的充要條件是(  )
A、a≥1或a≤0
B、、a>1或a<0
C、a≥1或a<0
D、0<a<1
分析:將函數(shù)f(x)有極值轉(zhuǎn)化成f′(x)有兩不等的根,再利用判別式進(jìn)行判定即可.
解答:解:函數(shù)f(x)=
1
3
ax3+ax2+x+1
有極值
則f′(x)=ax2+2ax+1=0有兩不等的根
當(dāng)a=0時(shí),無(wú)解
當(dāng)a≠0時(shí),△>0.即4a2-4a>0
解得a>1或a<0,
故選B.
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及充要條件的判斷,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
x
x2+2(a+2)x+3a
,(x≥1)
能用均值定理求最大值,則需要補(bǔ)充a的取值范圍是
a≥
1
3
a≥
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx(a>0)在x=x1和x=x2處取得極值.
(Ⅰ)若c=-a2,且|x1-x2|=2,求b的最大值;
(Ⅱ)設(shè)g(x)=f′(x)+x,若0<x1<x2
13a
,且x∈(0,x1),證明:x<g(x)<x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年大連市高二六月月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分12分)

已知函數(shù)f(x)=x3+bx2+cx+d (b,c,d∈R且都為常數(shù))的導(dǎo)函數(shù)f¢(x)=3x2+4x且f(1)=7,設(shè)F(x)=f(x)-ax2

(1)當(dāng)a<2時(shí),求F(x)的極小值;

(2)若對(duì)任意x∈[0,+∞)都有F(x)≥0成立,求a的取值范圍;

(3)在(2)的條件下比較a2-13a+39與的大小.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知函數(shù)f(x)=(m∈R,e=2.718 28…是自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)f(x)的極值;

(2)當(dāng)x>0時(shí),設(shè)f(x)的反函數(shù)為f-1(x),對(duì)0<p<q,試比較f(q-p)、f-1(q-p)及f-1(q)-f-1(p)的大小.

(文)已知函數(shù)f(x)=x3+bx2+cx+d(b、c、d∈R且都為常數(shù))的導(dǎo)函數(shù)為f′(x)=3x2+4x,且f(1)=7,設(shè)F(x)=f(x)-ax2(a∈R).

(1)當(dāng)a<2時(shí),求F(x)的極小值;

(2)若對(duì)任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范圍并證明不等式a2-13a+39≥.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知函數(shù)f(x)=(m∈R,e=2.718 28…是自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)f(x)的極值;

(2)當(dāng)x>0時(shí),設(shè)f(x)的反函數(shù)為f-1(x),對(duì)0<p<q,試比較f(q-p)、f-1(q-p)及f-1(q)-f-1(p)的大小.

(文)已知函數(shù)f(x)=x3+bx2+cx+d(b、c、d∈R且都為常數(shù))的導(dǎo)函數(shù)為f′(x)=3x2+4x,且f(1)=7,設(shè)F(x)=f(x)-ax2(a∈R).

(1)當(dāng)a<2時(shí),求F(x)的極小值;

(2)若對(duì)任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范圍并證明不等式a2-13a+39≥.

查看答案和解析>>

同步練習(xí)冊(cè)答案