【題目】已知函數(shù) .
(Ⅰ)求f(x)的最小正周期和單調(diào)增區(qū)間;
(Ⅱ)當(dāng)x∈[﹣ ,]時(shí),求函數(shù)f(x)的最小值和最大值.
【答案】(Ⅰ)最小正周期為 ,單調(diào)增區(qū)間為 ;(Ⅱ)最小值和最大值分別為和0
【解析】
(Ⅰ)利用二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,利用正弦函數(shù)的周期公式可得函數(shù)的周期,利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間;(Ⅱ)由可得,結(jié)合正弦函數(shù)的單調(diào)性即可得結(jié)果.
(Ⅰ)化簡(jiǎn)可得
=sin2x﹣(1+cos2x)﹣
=sin2x﹣cos2x﹣1
=sin(2x﹣)﹣1,
∴f(x)的最小正周期T==π,
由2kπ﹣≤2x﹣≤2kπ+可得kπ﹣≤x≤kπ+
∴函數(shù)的單調(diào)增區(qū)間為[kπ﹣,kπ+]k∈Z;
(Ⅱ)當(dāng)x∈[﹣,]時(shí),2x﹣∈[﹣,],
∴sin(2x﹣)∈[﹣,1],
∴函數(shù)f(x)的最小值和最大值分別為﹣﹣1和0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】天水市第一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,
規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,
得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào)。試求抽到9號(hào)或10號(hào)的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P—ABCD中,AP⊥CD,AD∥BC,AB=BC=1,AD=2,E,F(xiàn)分別為AD,PC的中點(diǎn).求證:
(1)AP∥平面BEF;
(2)平面BEF⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(為自然對(duì)數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的最小值為-1,且關(guān)于的方程的兩根為0和-2.
(1)求函數(shù)的解析式;
(2)設(shè)其中,求函數(shù)在時(shí)的最大值;
(3)若(為實(shí)數(shù)),對(duì)任意,總存在使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)的圖象上存在關(guān)于直線對(duì)稱(chēng)的不同兩點(diǎn),則稱(chēng)具有性質(zhì).已知為常數(shù),函數(shù),,對(duì)于命題:①存在,使得具有性質(zhì);②存在,使得具有性質(zhì),下列判斷正確的是( )
A.①和②均為真命題B.①和②均是假命題
C.①是真命題,②是假命題D.①是假命題,②是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定橢圓,稱(chēng)圓為橢圓的“伴隨圓”.已知點(diǎn)是橢圓上的點(diǎn)
(1)若過(guò)點(diǎn)的直線與橢圓有且只有一個(gè)公共點(diǎn),求被橢圓的伴隨圓所截得的弦長(zhǎng):
(2)是橢圓上的兩點(diǎn),設(shè)是直線的斜率,且滿(mǎn)足,試問(wèn):直線是否過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo),如果不過(guò)定點(diǎn),試說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大型單位舉行了一次全體員工都參加的考試,從中隨機(jī)抽取了20人的分?jǐn)?shù).以下莖葉圖記錄了他們的考試分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉):
若分?jǐn)?shù)不低于95分,則稱(chēng)該員工的成績(jī)?yōu)?/span>“優(yōu)秀”.
(1)從這20人中任取3人,求恰有1人成績(jī)“優(yōu)秀”的概率;
(2)根據(jù)這20人的分?jǐn)?shù)補(bǔ)全下方的頻率分布表和頻率分布直方圖,并根據(jù)頻率分布直方圖解決下面的問(wèn)題.
組別 | 分組 | 頻數(shù) | 頻率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
①估計(jì)所有員工的平均分?jǐn)?shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
②若從所有員工中任選3人,記表示抽到的員工成績(jī)?yōu)?/span>“優(yōu)秀”的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(多選)下列命題中為真命題的是( )
A.若事件與事件互為對(duì)立事件,則事件與事件為互斥事件
B.若事件與事件為互斥事件,則事件與事件互為對(duì)立事件
C.若事件與事件互為對(duì)立事件,則事件為必然事件
D.若事件為必然事件,則事件與事件為互斥事件
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com