(本題滿(mǎn)分15分)已知函數(shù),

(I)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(II)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.

(本題滿(mǎn)分15分)已知函數(shù),

(I)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(II)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍. 

解:(I)當(dāng)時(shí),,,     ………………2分

曲線(xiàn)在點(diǎn) 處的切線(xiàn)斜率,

所以曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.……5分

(II)解1:

當(dāng),即時(shí),,上為增函數(shù),

,所以,,這與矛盾……………8分

當(dāng),即時(shí),

;

,,

所以時(shí),取最小值,

因此有,即,解得,這與

矛盾;                                          ………………11分

當(dāng)時(shí),上為減函數(shù),所以

,所以,解得,這符合

綜上所述,的取值范圍為.                         ………………15分

解2:有已知得:,                    ………………7分

設(shè),,               ………………9分

,,所以上是減函數(shù).    ………………12分

所以.                                            ………………15分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省余姚中學(xué)高三上學(xué)期期中考試文科數(shù)學(xué)試卷(帶解析) 題型:解答題

(本題滿(mǎn)分15分)已知點(diǎn)(0,1),,直線(xiàn)、都是圓的切線(xiàn)(點(diǎn)不在軸上).
(Ⅰ)求過(guò)點(diǎn)且焦點(diǎn)在軸上的拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)(1,0)作直線(xiàn)與(Ⅰ)中的拋物線(xiàn)相交于兩點(diǎn),問(wèn)是否存在定點(diǎn)使為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)及常數(shù);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省揚(yáng)州市高二下期中數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿(mǎn)分15分)

已知命題p,命題q. 若“pq”為真命題,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分15分)已知函數(shù)

(Ⅰ)若為定義域上的單調(diào)函數(shù),求實(shí)數(shù)m的取值范圍;

(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;

(Ⅲ)當(dāng),且時(shí),證明:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三下學(xué)期2月模擬考試文科數(shù)學(xué) 題型:解答題

(本題滿(mǎn)分15分)已知圓N:和拋物線(xiàn)C:,圓的切線(xiàn)與拋物線(xiàn)C交于不同的兩點(diǎn)A,B,

(1)當(dāng)直線(xiàn)的斜率為1時(shí),求線(xiàn)段AB的長(zhǎng);

(2)設(shè)點(diǎn)M和點(diǎn)N關(guān)于直線(xiàn)對(duì)稱(chēng),問(wèn)是否存在直線(xiàn)使得?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:杭州市2010年第二次高考科目教學(xué)質(zhì)量檢測(cè) 題型:解答題

(本題滿(mǎn)分15分)已知直線(xiàn),曲線(xiàn)

   (1)若且直線(xiàn)與曲線(xiàn)恰有三個(gè)公共點(diǎn)時(shí),求實(shí)數(shù)的取值;

   (2)若,直線(xiàn)與曲線(xiàn)M的交點(diǎn)依次為A,B,C,D四點(diǎn),求|AB+|CD|的取值范圍。[來(lái)源:Z+xx+k.Com]

      

 

查看答案和解析>>

同步練習(xí)冊(cè)答案