【題目】設數(shù)列{an}的n項和為Sn , 且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則{an}的通項公式an= .
【答案】
【解析】解:設bn=nSn+(n+2)an ,
∵數(shù)列{an}的前n項和為Sn , 且a1=a2=1,
∴b1=4,b2=8,
∴bn=b1+(n﹣1)×(8﹣4)=4n,
即bn=nSn+(n+2)an=4n
當n≥2時,Sn﹣Sn﹣1+(1+ )an﹣(1+ )an﹣1=0
∴ = ,
即2 ,
∴{ }是以 為公比,1為首項的等比數(shù)列,
∴ = ,
∴ .
【考點精析】本題主要考查了等差數(shù)列的性質(zhì)的相關知識點,需要掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx - .
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)證明:當x>1時,f(x)<x-1;
(3)確定實數(shù)k的所有可能取值,使得存在x0>1,當x∈(1,x0)時,恒有f(x)>k(x-1).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣l|+|x﹣3|.
(1)解不等式f(x)≤6;
(2)若不等式f(x)≥ax﹣1對任意x∈R恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=,x∈(-2,2).
(1) 判斷f(x)的奇偶性并說明理由;
(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);
(3) 若f(2+a)+f(1-2a)>0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設ξ為隨機變量,從側(cè)面均是等邊三角形的正四棱錐的8條棱中任選兩條,ξ為這兩條棱所成的角.
(1)求概率 ;
(2)求ξ的分布列,并求其數(shù)學期望E(ξ).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面上,過點P作直線l的垂線所得的垂足稱為點P在直線l上的投影,由區(qū)域 中的點在直線x+y﹣2=0上的投影構(gòu)成的線段記為AB,則|AB|=( )
A.2
B.4
C.3
D.6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2= ,anbn+1+bn+1=nbn .
(1)求{an}的通項公式;
(2)求{bn}的前n項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com