【題目】設數(shù)列{an}的n項和為Sn , 且a1=a2=1,{nSn+(n+2)an}為等差數(shù)列,則{an}的通項公式an=

【答案】
【解析】解:設bn=nSn+(n+2)an
∵數(shù)列{an}的前n項和為Sn , 且a1=a2=1,
∴b1=4,b2=8,
∴bn=b1+(n﹣1)×(8﹣4)=4n,
即bn=nSn+(n+2)an=4n
當n≥2時,Sn﹣Sn1+(1+ )an﹣(1+ )an1=0
= ,
即2 ,
∴{ }是以 為公比,1為首項的等比數(shù)列,
= ,

【考點精析】本題主要考查了等差數(shù)列的性質(zhì)的相關知識點,需要掌握在等差數(shù)列{an}中,從第2項起,每一項是它相鄰二項的等差中項;相隔等距離的項組成的數(shù)列是等差數(shù)列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx - .

(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;

(2)證明:x>1,f(x)<x-1;

(3)確定實數(shù)k的所有可能取值,使得存在x0>1,x∈(1,x0),恒有f(x)>k(x-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設直線過點,且傾斜角為

(1)寫出直線的標準參數(shù)方程;

(2)設此直線與曲線( 為參數(shù))交于兩點,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣l|+|x﹣3|.
(1)解不等式f(x)≤6;
(2)若不等式f(x)≥ax﹣1對任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=,x∈(-2,2).

(1) 判斷f(x)的奇偶性并說明理由;

(2) 求證:函數(shù)f(x)在(-2,2)上是增函數(shù);

(3) 若f(2+a)+f(1-2a)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設ξ為隨機變量,從側(cè)面均是等邊三角形的正四棱錐的8條棱中任選兩條,ξ為這兩條棱所成的角.
(1)求概率 ;
(2)求ξ的分布列,并求其數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)是同一函數(shù)的是

; ②;

; ④

A. ②③ B. ①③ C. ③④ D. ①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面上,過點P作直線l的垂線所得的垂足稱為點P在直線l上的投影,由區(qū)域 中的點在直線x+y﹣2=0上的投影構(gòu)成的線段記為AB,則|AB|=(  )
A.2
B.4
C.3
D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2= ,anbn+1+bn+1=nbn
(1)求{an}的通項公式;
(2)求{bn}的前n項和.

查看答案和解析>>

同步練習冊答案