(06年江西卷理)對(duì)于R上可導(dǎo)的任意函數(shù)f(x),若滿(mǎn)足(x-1)³0,則必有( )
A. f(0)+f(2)<2f(1) B. f(0)+f(2)£2f(1)
C. f(0)+f(2)³2f(1) D. f(0)+f(2)>2f(1)
答案:C
解析:依題意,當(dāng)x³1時(shí),f¢(x)³0,函數(shù)f(x)在(1,+¥)上是增函數(shù);當(dāng)x<1時(shí),f¢(x)£0,f(x)在(-¥,1)上是減函數(shù),故f(x)當(dāng)x=1時(shí)取得最小值,即有
f(0)³f(1),f(2)³f(1),故選C
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(06年江西卷理)已知圓M:(x+cosq)2+(y-sinq)2=1,
直線(xiàn)l:y=kx,下面四個(gè)命題:
(A)對(duì)任意實(shí)數(shù)k與q,直線(xiàn)l和圓M相切;
(B)對(duì)任意實(shí)數(shù)k與q,直線(xiàn)l和圓M有公共點(diǎn);
(C)對(duì)任意實(shí)數(shù)q,必存在實(shí)數(shù)k,使得直線(xiàn)l與
和圓M相切
(D)對(duì)任意實(shí)數(shù)k,必存在實(shí)數(shù)q,使得直線(xiàn)l與
和圓M相切
其中真命題的代號(hào)是______________(寫(xiě)出所有真命題的代號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(06年江西卷理)(12分)
已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時(shí)都取得極值
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2)若對(duì)xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com