已知函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)記函數(shù)的圖象為曲線,設(shè)點是曲線上的不同兩點.如果在曲線上存在點,使得:①;②曲線在點處的切線平行于直線,則稱函數(shù)存在“中值相依切線”,試問:函數(shù)是否存在“中值相依切線”,請說明理由.

(1)當(dāng)時,的單調(diào)遞增區(qū)間為;當(dāng)的單調(diào)遞增區(qū)間為;(2)函數(shù)不存在“中值相依切線”.

解析試題分析:(1)當(dāng)時,分兩種情況分別進行分析,當(dāng)時, , 顯然函數(shù)上單調(diào)遞增;當(dāng)時, ,令,解得;所以當(dāng)時,函數(shù)上單調(diào)遞增;當(dāng)時,函數(shù)上單調(diào)遞增;(2)先設(shè)是曲線上的不同兩點,求出的表達式化簡得到:,再經(jīng)過求導(dǎo)分析得出函數(shù)不存在“中值相依切線”.
試題解析:(1)函數(shù)的定義域是. 由已知得, 
當(dāng)時, , 顯然函數(shù)上單調(diào)遞增;
當(dāng)時, ,令,解得
函數(shù)上單調(diào)遞增,
綜上所述:①當(dāng)時,函數(shù)上單調(diào)遞增;
②當(dāng)時,函數(shù)上單調(diào)遞增;
(2)假設(shè)函數(shù)存在“中值相依切線”
設(shè)是曲線上的不同兩點,且,
,.
  
曲線在點處的切線斜率  
依題意得: 
化簡可得: , 即= 
設(shè) (),上式化為:,
.  令,
.
因為,顯然,所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)當(dāng)時,求的最小值;
(2)在區(qū)間(1,2)內(nèi)任取兩個實數(shù)p,q,且p≠q,若不等式>1恒成立,求實數(shù)a的取值范圍;
(3)求證:(其中)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知 (其中是自然對數(shù)的底)
(1) 若處取得極值,求的值;
(2) 若存在極值,求a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù);
(1)若>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;
(2)若f(x)在[1,e]上的最小值為,求的值;
(3)若f(x)<x2在(1,上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設(shè)該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設(shè)建造成本僅與表面積有關(guān),側(cè)面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數(shù)V(r),并求該函數(shù)的定義域;
(2)討論函數(shù)V(r)的單調(diào)性,并確定r和h為何值時該蓄水池的體積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,圖象與軸異于原點的交點M處的切線為軸的交點N處的切線為, 并且平行.
(1)求的值;
(2)已知實數(shù)t∈R,求的取值范圍及函數(shù)的最小值;
(3)令,給定,對于兩個大于1的正數(shù),存在實數(shù)滿足:,并且使得不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=.
(1)確定yf(x)在(0,+∞)上的單調(diào)性;
(2)若a>0,函數(shù)h(x)=xf(x)-xax2在(0,2)上有極值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x3x2axax∈R,其中a>0.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(-2,0)內(nèi)恰有兩個零點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-aln xx(a≠0),
(1)若曲線yf(x)在點(1,f(1))處的切線與直線x-2y=0垂直,求實數(shù)a的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案