【題目】為豐富中學生的課余生活,增進中學生之間的交往與學習,某市甲乙兩所中學舉辦一次中學生圍棋擂臺賽.比賽規(guī)則如下,雙方各出3名隊員并預先排定好出場順序,雙方的第一號選手首先對壘,雙方的勝者留下進行下一局比賽,負者被淘汰出局,由第二號選手挑戰(zhàn)上一局獲勝的選手,依此類推,直到一方的隊員全部被淘汰,另一方算獲勝.假若雙方隊員的實力旗鼓相當(即取勝對手的概率彼此相等) (Ⅰ)在已知乙隊先勝一局的情況下,求甲隊獲勝的概率.
(Ⅱ)記雙方結束比賽的局數(shù)為ξ,求ξ的分布列并求其數(shù)學期望Eξ.

【答案】解:(Ⅰ)在已知乙隊先勝一局的情況下,相當于乙校還有3名選手,而甲校還剩2名選手,甲校要想取勝,需要連勝3場,或者比賽四場要勝三場,且最后一場獲勝,所以甲校獲勝的概率是 (Ⅱ)記雙方結束比賽的局數(shù)為ξ,則ξ=3,4,5


所以ξ的分布列為

ξ

3

4

5

P

數(shù)學期望
【解析】(Ⅰ)在已知乙隊先勝一局的情況下,相當于乙校還有3名選手,而甲校還剩2名選手,甲校要想取勝,需要連勝3場,或者比賽四場要勝三場,且最后一場獲勝,由此能求出甲校獲勝的概率.(Ⅱ)記雙方結束比賽的局數(shù)為ξ,則ξ=3,4,5.由題設條件知 , ,由此能求出ξ的數(shù)學期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在各項均為正數(shù)的等比數(shù)列{an}中,a1=2,且2a1 , a3 , 3a2成等差數(shù)列.
(Ⅰ) 求等比數(shù)列{an}的通項公式;
(Ⅱ) 若數(shù)列{bn}滿足bn=11﹣2log2an , 求數(shù)列{bn}的前n項和Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,集合A={x|4≤2x<128},B={x|1<x≤6},M={x|a﹣3<x<a+3}.
(1)求A∩UB;
(2)若M∪UB=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結論中錯誤的是(
A.f(x)是偶函數(shù)
B.函f(x)最小值為
C. 是函f(x)的一個周期
D.函f(x)在(0, )內(nèi)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個結論中正確的個數(shù)是( ) ①“x2+x﹣2>0”是“x>1”的充分不必要條件
②命題:“x∈R,sinx≤1”的否定是“x0∈R,sinx0>1”.
③“若x= ,則tanx=1,”的逆命題為真命題;
④若f(x)是R上的奇函數(shù),則f(log32)+f(log23)=0.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直角△ABC中,∠C=90°,D在BC上,CD=2DB,tan∠BAD= ,則sin∠BAC=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=xex
(1)求f(x)的極值;
(2)k×f(x)≥ x2+x在[﹣1,+∞)上恒成立,求k值的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C1:y= x2(p>0)的焦點與雙曲線C2 ﹣y2=1的右焦點的連線交C1于第一象限的點M,若C1在點M處的切線平行于C2的一條漸近線,則p=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xoy中,直線的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系,曲線C的極坐標方程為
(1)求曲線C的直角坐標方程,并指出其表示何種曲線;
(2)設直線l與曲線C交于A,B兩點,若點P的直角坐標為(1,0),試求當 時,|PA|+|PB|的值.

查看答案和解析>>

同步練習冊答案