如圖,圓錐中,為底面圓的兩條直徑 ,AB交CD于O,且,的中點(diǎn).

(1)求證:平面;
(2)求圓錐的表面積;求圓錐的體積。
(3)求異面直線所成角的正切值 .

(1)連結(jié),、分別為、的中點(diǎn),,平面(2)表面積為,體積為(3)

解析試題分析:(1)連結(jié),                               1分
、分別為的中點(diǎn),,        2分
,平面.  4分(表述缺漏扣1分)
(2),              5分,
,      6分
,          8分
(3)為異面直線所成角. …9分
,, 10分
.在中,,, 11分
,
異面直線所成角的正切值為.            12分
考點(diǎn):線面平行的判定,錐體體積及異面直線所成角
點(diǎn)評(píng):證明線面平行可證明直線與平面內(nèi)的一條直線平行,即轉(zhuǎn)化為線線平行,求異面直線所成角時(shí)首先將異面直線平移為相交直線,常通過(guò)中位線等產(chǎn)生的平行關(guān)系實(shí)現(xiàn)平移,找到所求角進(jìn)而解三角形得到角的大小

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示的三個(gè)圖中,上面的是一個(gè)長(zhǎng)方體截去一個(gè)角所得多面體的直觀圖,它的正視圖和側(cè)視圖在下面畫出(單位:cm).
 
(1)按照畫三視圖的要求畫出該多面體的俯視圖;
(2)在所給直觀圖中連接BC′,求證:BC′∥面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱ABC-ABC的側(cè)面AACC與底面ABC垂直,AB=BC=CA=4,且AA⊥AC,AA=AC.

(Ⅰ)證明:AC⊥BA
(Ⅱ)求側(cè)面AABB與底面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

正方形ABCD中,點(diǎn)O是對(duì)角線AC的中點(diǎn),點(diǎn)P是對(duì)角線AC上一動(dòng)點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P在線段OA上運(yùn)動(dòng)時(shí)(不與點(diǎn)A、O重合) ,PEPB交線段CD于點(diǎn)E,PFCD于點(diǎn)E

①判斷線段DF、EF的數(shù)量關(guān)系,并說(shuō)明理由;
②寫出線段PC、PA、CE之間的一個(gè)等量關(guān)系,并證明你的結(jié)論;
(2)如圖2,當(dāng)點(diǎn)P在線段OC上運(yùn)動(dòng)時(shí)(不與點(diǎn)O、C重合),PEPB交直線CD于點(diǎn)E,PFCD于點(diǎn)E.判斷(1)中的結(jié)論①、②是否成立?若成立,說(shuō)明理由;若不成立,寫出相應(yīng)的結(jié)論并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(cè)(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點(diǎn)M是A1B1的中點(diǎn).

(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面為矩形,平面,點(diǎn)分別是的中點(diǎn).

求證:平面;
, 四棱錐外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

圖1是一個(gè)正方體的表面展開(kāi)圖,MN和PB是兩條面對(duì)角線,請(qǐng)?jiān)趫D2的正方體中將MN和PB畫出來(lái),并就這個(gè)正方體解決下列問(wèn)題

(1) 求證:MN//平面PBD; (2)求證:AQ平面PBD;
(3)求二面角P-DB-M的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分11分)
如圖示,給出的是某幾何體的三視圖,其中正視圖與側(cè)視圖都是邊長(zhǎng)為2的正三角形,俯視圖為半徑等于1的圓.試求這個(gè)幾何體的側(cè)面積與體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題8分)如圖所示,在正三棱柱中,若,中點(diǎn)。

(1)證明:平面
(2)求所成的角的大小。

查看答案和解析>>

同步練習(xí)冊(cè)答案