關于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:
①由f(x1)=f(x2)=0可得x1-x2必是的整數(shù)倍;
②y= f(x)的表達式可改寫為y=4cos(2x-);
③y= f(x)的圖象關于點(-,0)對稱;
④y= f(x)的圖象關于直線x=-對稱.
其中正確的命題的序號是 .
②③
解析試題分析:∵f(x)=4sin(2x+),(x∈R)的周期為π,
當x1=-,x2=
時,f(x1)=f(x2)=0,x1-x2 =≠kπ,k∈z,故①是錯誤的.
∵由誘導公式可得f(x)=4sin(2x+)=4cos(-2x-)=4cos(-2x)=4cos(2x-),故 ②正確.
∵當 x=-時,f(x)=0,即點(-,0)是f(x)與x軸的交點,是對稱中心,故③正確.
∵當 x=時,f(x)=4sin(2x+)=0,不是f(x)的最值,故④是錯誤的.
綜上知,答案為②③。
考點:本題主要考查正弦型函數(shù)的對稱性、單調性、周期性,誘導公式的應用。
點評:典型題,通過舉反例說明命題不正確,通過推證說明命題正確,是解答此類問題的常用方法。
科目:高中數(shù)學 來源: 題型:填空題
設是實數(shù).若函數(shù)是定義在上的奇函數(shù),但不是偶函數(shù),則函數(shù)的遞增區(qū)間為__________;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
函數(shù)的定義域為A,若則稱為單函數(shù).例如,函數(shù)是單函數(shù).下列命題:
①函數(shù)是單函數(shù);
②若為單函數(shù),;
③若為單函數(shù),則對于任意bB,它至多有一個原象;
④函數(shù)在某區(qū)間上具有單調性,則一定是單函數(shù).其中的真命題是 (寫出所有真命題的編號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com