【題目】2019年全國“兩會”,即中華人民共和國第十三屆全國人大二次會議和中國人民政治協(xié)商會議第十三屆全國委員會第二次會議,分別于2019年3月5日和3月3日在北京召開.為了了解哪些人更關注“兩會”,某機構隨機抽取了年齡在15~75歲之間的200人進行調(diào)查,并按年齡繪制的頻率分布直方圖如下圖所示,把年齡落在區(qū)間[15,35)和[35,75]內(nèi)的人分別稱為“青少年人”和“中老年人”.經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)之比為19:21.其中“青少年人”中有40人關注“兩會”,“中老年人”中關注“兩會”和不關注“兩會”的人數(shù)之比是2:1.

(Ⅰ)求圖中的值;

(Ⅱ)現(xiàn)采用分層抽樣在[25,35)和[45,55)中隨機抽取8名代表,從8人中任選2人,求2人中至少有1個是“中老年人”的概率是多少?

(Ⅲ)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)此統(tǒng)計結果判斷:能否有99.9%的把握認為“中老年人”比“青少年人”更加關注“兩會”?

關注

不關注

合計

青少年人

中老年人

合計

【答案】(Ⅰ)(Ⅱ)(Ⅲ)見解析

【解析】

(Ⅰ)根據(jù)頻率分布直方圖列方程,解得結果,(Ⅱ)根據(jù)枚舉法以及古典概型概率公式求結果,(Ⅲ)先根據(jù)條件列2×2列聯(lián)表,再根據(jù)公式求卡方,最后對照數(shù)據(jù)作判斷.

(Ⅰ)由題意得 ,解得

(Ⅱ)由題意得在[25,35)中抽取6人,記為,在[45,55)中抽取2人, 記為.

則從8人中任取2人的全部基本事件(共28種)列舉如下:

記2人中至少有1個是“中老年人”的概率是,則.

(Ⅲ)2×2列聯(lián)表如下:

關注

不關注

合計

青少年人

40

55

95

中老年人

70

35

105

合計

110

90

200

所以有99.9%的把握認為中老年人青少年人更加關注“兩會”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,點在橢圓上,橢圓的離心率是.

(1)求橢圓的標準方程;

(2)設點為橢圓長軸的左端點,為橢圓上異于橢圓長軸端點的兩點,記直線斜率分別為,若,請判斷直線是否過定點?若過定點,求該定點坐標,若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足:對任意的nN*,都有an+1+Sn+11,又a1

1)求數(shù)列{an}的通項公式;

2)令bnlog2an,求nN*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當時,函數(shù)是否存在零點?如果存在,求出零點;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),直線.

(Ⅰ)設圖象上一點,為原點,直線的斜率,若 上存在極值,求的取值范圍;

(Ⅱ)是否存在實數(shù),使得直線是曲線的切線?若存在,求出的值;若不存在,說明理由;

(Ⅲ)試確定曲線與直線的交點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an},其前n項和為Sn,若S10100,a1a2,a5成等比數(shù)列.

1)求{an}的通項公式;

2bnanan+1+an+an+1+1,求數(shù)列的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.

(1)求線段AB的中點M的軌跡C的方程;

(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓過點,離心率為,左右焦點分別為,過點的直線交橢圓于兩點。

(1)求橢圓的方程;

(2)當的面積為時,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,連結M,N兩地之間的鐵路線是圓心在上的一段圓弧,若點M在點O正北方向3公里;點N到的距離分別為4公里和5公里.

1)建立適當?shù)淖鴺讼担箬F路線所在圓弧的方程;

2)若該城市的某中學擬在點O的正東方向選址建分校,考慮環(huán)境問題,要求校址到點O的距離大于4公里,并且鐵路上任意一點到校址的距離不能小于公里,求該校址距點O的最短距離(注:校址視為一個點)

查看答案和解析>>

同步練習冊答案