已知雙曲線(xiàn)C的漸近線(xiàn)為y=±
3
x
且過(guò)點(diǎn)M(1,
2
).
(1)求雙曲線(xiàn)C的方程;
(2)若直線(xiàn)y=ax+1與雙曲線(xiàn)C相交于A(yíng),B兩點(diǎn),O為坐標(biāo)原點(diǎn),若OA與OB垂直,求a的值.
(1)由題意可知:雙曲線(xiàn)的焦點(diǎn)在x軸上,可設(shè)方程為
x2
a2
-
y2
b2
=1
,
b
a
=
3
1
a2
-
2
b2
=1
,解得
a2=
1
3
b2=1
,
∴雙曲線(xiàn)C的方程為3x2-y2=1.
(2)設(shè)A(x1,y1),B(x2,y2),聯(lián)立
y=ax+1
3x2-y2=1
,化為(3-a2)x2-2ax-2=0,(3-a2≠0).
∵直線(xiàn)y=ax+1與雙曲線(xiàn)C相交于A(yíng),B兩點(diǎn),∴△=4a2+8(3-a2)>0,化為a2<6.
x1+x2=
2a
3-a2
,x1x2=
-2
3-a2
.(*)
OA
OB
,∴
OA
OB
=0

∴x1x2+y1y2=0,又y1=ax1+1,y2=ax2+1,
∴(1+a2)x1x2+a(x1+x2)+1=0,
把(*)代入上式得
-2(1+a2)
3-a2
+
2a2
3-a2
+1=0
,
化為a2=1.滿(mǎn)足△>0.
∴a=±1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為橢圓E的兩個(gè)左右焦點(diǎn),拋物線(xiàn)C以為頂點(diǎn),為焦點(diǎn),設(shè)P為橢圓與拋物線(xiàn)的一個(gè)交點(diǎn),如果橢圓離心率e滿(mǎn)足,則e的值為( )

M

 
A.             B.          C.          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,P是拋物線(xiàn)C:x2=2y上一點(diǎn),F(xiàn)為拋物線(xiàn)的焦點(diǎn),直線(xiàn)l過(guò)點(diǎn)P且與拋物線(xiàn)交于另一點(diǎn)Q,已知P(x1,y1),Q(x2,y2).
(1)若l經(jīng)過(guò)點(diǎn)F,求弦長(zhǎng)|PQ|的最小值;
(2)設(shè)直線(xiàn)l:y=kx+b(k≠0,b≠0)與x軸交于點(diǎn)S,與y軸交于點(diǎn)T
①求證:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線(xiàn)l:x-y=0與橢圓
x2
2
+y2=1相交A、B兩點(diǎn),點(diǎn)C是橢圓上的動(dòng)點(diǎn),則△ABC面積的最大值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)拋物線(xiàn)y2=2px(p為常數(shù))的準(zhǔn)線(xiàn)與X軸交于點(diǎn)K,過(guò)K的直線(xiàn)l與拋物線(xiàn)交于A(yíng)、B兩點(diǎn),則
OA
OB
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,A、B分別是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的上、下兩頂點(diǎn),P是雙曲線(xiàn)
y2
a2
-
x2
b2
=1
上在第一象限內(nèi)的一點(diǎn),直線(xiàn)PA、PB分別交橢圓于C、D點(diǎn),如果D恰是PB的中點(diǎn).
(1)求證:無(wú)論常數(shù)a、b如何,直線(xiàn)CD的斜率恒為定值;
(2)求雙曲線(xiàn)的離心率,使CD通過(guò)橢圓的上焦點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

若橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為2
5
,且過(guò)點(diǎn)(-3,2),⊙O的圓心為原點(diǎn),直徑為橢圓的短軸,⊙M的方程為(x-8)2+(y-6)2=4,過(guò)⊙M上任一點(diǎn)P作⊙O的切線(xiàn)PA、PB,切點(diǎn)為A、B.
(1)求橢圓的方程;
(2)若直線(xiàn)PA與⊙M的另一交點(diǎn)為Q,當(dāng)弦PQ最大時(shí),求直線(xiàn)PA的直線(xiàn)方程;
(3)求
OA
OB
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知點(diǎn)A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右頂點(diǎn),若點(diǎn)C(
3
2
,
3
2
)
在橢圓上,且滿(mǎn)足
OC
OA
=
3
2
.(其中O為坐標(biāo)原點(diǎn))
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線(xiàn)l與橢圓交于兩點(diǎn)M,N,當(dāng)
OM
+
ON
=m
OC
,m∈(0,2)
時(shí),求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓C過(guò)定點(diǎn)F(-
1
4
,0),且與直線(xiàn)x=
1
4
相切,圓心C的軌跡為E,曲線(xiàn)E與直線(xiàn)l:y=k(x+1)(k∈R)相交于A(yíng)、B兩點(diǎn).
(I)求曲線(xiàn)E的方程;
(II)當(dāng)△OAB的面積等于
10
時(shí),求k的值;

查看答案和解析>>

同步練習(xí)冊(cè)答案