【題目】已知圓與坐標(biāo)軸交于(如圖).

1)點(diǎn)是圓上除外的任意點(diǎn)(如圖1),與直線交于不同的兩點(diǎn),求的最小值;

2)點(diǎn)是圓上除外的任意點(diǎn)(如圖2),直線軸于點(diǎn),直線于點(diǎn).設(shè)的斜率為的斜率為,求證: 為定值.

【答案】(1);2)證明見解析.

【解析】試題分析:(1)設(shè)出, 的直線方程,聯(lián)立直線,分別得出M,N的坐標(biāo),表示出,求其最值即可;(2)分別寫出E,F的坐標(biāo),寫出斜率,即可證明為定值.

試題解析:(1)由題設(shè)可以得到直線的方程為,直線的方程為

,解得;由,解得.

所以,直線與直線的交點(diǎn),

直線與直線的交點(diǎn),所以.

當(dāng)時, ,等號成立的條件是.

當(dāng)時, ,等號成立的條件是.

故線段長的最小值是.

(2)由題意可知

的斜率為直線的方程為,由,得

則直線的方程為,令,則,即,

直線的方程為,由,解得,

的斜率(定值).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016年3月9日至15日,谷歌人工智能系統(tǒng)“阿爾法”迎戰(zhàn)圍棋冠軍李世石,最終結(jié)果“阿爾法”以總比分4比1戰(zhàn)勝李世石.許多人認(rèn)為這場比賽是人類的勝利,也有許多人持反對意見,有網(wǎng)友為此進(jìn)行了調(diào)查,在參加調(diào)查的2548名男性中有1560名持反對意見,2452名女性中有1200名持反對意見,在運(yùn)用這些數(shù)據(jù)說明“性別”對判斷“人機(jī)大戰(zhàn)是人類的勝利”是否有關(guān)系時,應(yīng)采用的統(tǒng)計方法是(
A.莖葉圖
B.分層抽樣
C.獨(dú)立性檢驗(yàn)
D.回歸直線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國2009年至2015年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2017年我國生活垃圾無害化處理量.
參考數(shù)據(jù): yi=9.32, tiyi=40.17, =0.55, ≈2.646.
參考公式:相關(guān)系數(shù)r= =
回歸方程 = + t中斜率和截距的最小二乘估計公式分別為: = , = t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指懸浮在空氣中的空氣動力學(xué)當(dāng)量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據(jù)現(xiàn)行國家標(biāo)準(zhǔn)GB3095﹣2012,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75毫克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).從某自然保護(hù)區(qū)2012年全年每天的PM2.5監(jiān)測值數(shù)據(jù)中隨機(jī)地抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值頻數(shù)如表所示:

PM2.5日均值
(微克/立方米)

[25,35]

(35,45]

(45,55]

(55,65]

(65,75]

(75,85]

頻數(shù)

3

1

1

1

1

3


(1)從這10天的PM2.5日均值監(jiān)測數(shù)據(jù)中,隨機(jī)抽取3天,求恰有1天空氣質(zhì)量達(dá)到一級的概率;
(2)從這10天的數(shù)據(jù)中任取3天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列;
(3)以這10天的PM2.5日均值來估計一年的空氣質(zhì)量狀況,則一年(按366天算)中平均有多少天的空氣質(zhì)量達(dá)到一級或二級.(精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.已知函數(shù)

(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】Sn表示等差數(shù)列{an}的前n項(xiàng)的和,且S4=S9 , a1=﹣12
(1)求數(shù)列的通項(xiàng)an及Sn;
(2)求和Tn=|a1|+|a2|+…+|an|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x+sin|x|,x∈[﹣π,π]的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0),短軸長2,兩焦點(diǎn)分別為F1 , F2 , 過F1的直線交橢圓C于M,N兩點(diǎn),且△F2MN的周長為8.

(1)求橢圓C的方程;
(2)直線l與橢圓C相交于A,B點(diǎn),點(diǎn)D為橢圓C上一點(diǎn),四邊形AOBD為矩形,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sin2x+sinxcosx+cos2x,x∈R. 求:
(1)f()的值;
(2)函數(shù)f(x)的最小值及相應(yīng)x值;
(3)函數(shù)f(x)的遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案