【題目】某產品在某銷售點的零售價x(單位:元)與每天的銷售量y(單位:個)的統(tǒng)計數(shù)據(jù)如表所示:

x

16

17

18

19

y

50

34

41

31

由表可得回歸直線方程 中的 ,根據(jù)模型預測零售價為20元時,每天的銷售量約為(
A.30
B.29
C.27.5
D.26.5

【答案】D
【解析】解:由題意, =17.5, =39, ∴樣本中心點為(17.5,39),
∵數(shù)據(jù)的樣本中心點在線性回歸直線上,39=﹣5×17.5+ ,
=126.5
∴x=20時,y=﹣100+126.5=26.5萬元.
故選:D.
首先求出所給數(shù)據(jù)的平均數(shù),得到樣本中心點,根據(jù)線性回歸直線過樣本中心點,求出方程中的一個系數(shù),得到線性回歸方程,把20代入,預報出結果.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券類穩(wěn)健型產品的收益與投資額成正比,投資股票類風險型產品的收益與投資額的算術平方根成正比,已知兩類產品各投資1萬元時的收益分別為0.125萬元和0.5萬元,如圖:

(Ⅰ)分別寫出兩類產品的收益y(萬元)與投資額x(萬元)的函數(shù)關系;
(Ⅱ)該家庭有20萬元資金,全部用于理財投資,問:怎么分配資金能使投資獲得最大收益,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x),定義
(Ⅰ)寫出函數(shù)F(2x﹣1)的解析式;
(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求實數(shù)a的值;
(Ⅲ)當 時,求h(x)=cosxF(x+sinx)的零點個數(shù)和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上. (Ⅰ)求異面直線D1E與A1D所成的角;
(Ⅱ)若二面角D1﹣EC﹣D的大小為45°,求點B到平面D1EC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C的方程為: =1
(1)求雙曲線C的離心率;
(2)求與雙曲線C有公共的漸近線,且經過點A(﹣3,2 )的雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b∈R,若a2+b2﹣ab=1,則ab的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=log2(x+2)的定義域是(
A.[2,+∞)
B.[﹣2,+∞)
C.(﹣2,+∞)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD與AB垂直,并與AB相交于點E,點F為弦CD上異于點E的任意一點,連接BF、AF并延長交⊙O于點M、N.
(1)求證:B、E、F、N四點共圓;
(2)求證:AC2+BFBM=AB2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等比數(shù)列{an}的前n項和為Sn , 且a2a3=a5 , S4=10S2
(1)求數(shù)列{an}的通項公式;
(2)設bn=(2n﹣1)an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案