給出下列命題:
①函數(shù)y=tan(3x-
π
2
)
的最小正周期是
π
3

②角α終邊上一點P(-3a,4a),且a≠0,那么cosα=-
3
5

③函數(shù)y=cos(2x-
π
3
)
的圖象的一個對稱中心是(-
π
12
,0)

④已知向量
a
=(1,2),
b
=(1,0),
c
=(3,4).若λ為實數(shù),且(
a
b
)∥
c
,則λ=2
⑤設f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=2x2-x,則f(1)=-3
其中正確的個數(shù)有( 。
分析:根據(jù)正切函數(shù)的最小正周期是π,判斷①是否正確;
利用三角函數(shù)定義,r=|5a|,用定義驗證②是否正確;
令x=-
π
12
,求2x-
π
3
,驗證③是否正確;
利用向量的線性運算與共線的坐標表示求解,判斷④的正確性;
利用奇函數(shù)的性質(zhì)f(1)與f(-1)的關系求解即可.
解答:解:根據(jù)正切函數(shù)的最小正周期,①√;
∵根據(jù)三角函數(shù)定義 cosα=
-3a
5|a|
,當a<0時cosα=
3
5
,∴②×;
∵x=-
π
12
⇒2x-
π
3
=-
π
2
,∴③√;
a
b
=(1+λ,2),∵(
a
b
)∥
c
⇒λ=
1
2
,∴④×;
∵f(1)=-f(-1)=-(2+1)=-3,∴⑤√;
故選C
點評:本題考查了三角函數(shù)的定義,平面向量共線的坐標表示,三角函數(shù)的對稱中心、周期問題,以及函數(shù)奇偶性的應用.
a
=(x1,y1),
b
=(x2,y2);
a
b
?x1y2-x2y1=0.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)f(x)=4cos(2x+
π
3
)
的一條對稱軸是直線x=-
12

②已知函數(shù)f(x)=min{sinx,cosx},則f(x)的值域為[-1,
2
2
]
;
③若α,β均為第一象限角,且α>β,則sinα>sinβ.
其中真命題的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(3a-1)x-2  x<1
logax         x≥1
,現(xiàn)給出下列命題:
①函數(shù)f(x)的圖象可以是一條連續(xù)不斷的曲線;
②能找到一個非零實數(shù)a,使得函數(shù)f (x)在R上是增函數(shù);
③a>1時函數(shù)y=f (|x|) 有最小值-2.
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的“l(fā)高調(diào)函數(shù)”.現(xiàn)給出下列命題:
①函數(shù)f(x)=2x為R上的“1高調(diào)函數(shù)”;
②函數(shù)f(x)=sin2x為R上的“A高調(diào)函數(shù)”;
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上“m高調(diào)函數(shù)”,那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題是
①②③
①②③
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=sin|x|不是周期函數(shù);        ②函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
③函數(shù)y=|cos2x+
1
2
|
的周期是
π
2
;    ④函數(shù)y=sin(x+
2
)
是偶函數(shù).
其中正確的命題的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①函數(shù)y=cos(
2
3
x+
π
2
)
是奇函數(shù);②函數(shù)y=sinx+cosx的最大值為
3
2

③函數(shù)y=tanx在第一象限內(nèi)是增函數(shù);
④函數(shù)y=sin(2x+
π
2
)
的圖象關于直線x=
π
12
成軸對稱圖形.
其中正確的命題序號是

查看答案和解析>>

同步練習冊答案