已知函數(shù)f(x)=
1x
與g(x)=-x2+bx的圖象只有兩個(gè)公共點(diǎn)A、B
,設(shè)A(x1,y1),B(x2,y2),求b,x1及x2的值.
分析:構(gòu)造函數(shù)設(shè)F(x)=x3-bx2+1,則方程F(x)=0與f(x)=g(x)同解,可知其有且僅有兩個(gè)不同零點(diǎn)x1,x2.利用函數(shù)與導(dǎo)數(shù)知識(shí)求解.
解答:解:設(shè)F(x)=x3-bx2+1,則方程F(x)=0與f(x)=g(x)同解,故其有且僅有兩個(gè)不同零點(diǎn)x1,x2
由F'(x)=0得x=0或x=
2
3
b
.這樣,必須且只須F(0)=0或F(
2
3
b
)=0,因?yàn)镕(0)=1,故必有F(
2
3
b
)=0,由此得b=
3
2
32

不妨設(shè)x1<x2,則x2=
2
3
b
=
32
,所以 F(x)=(x-x1(x-
32
)2
,比較系數(shù)得-x1
34
=1,故x1=-
1
2
32

故b=
3
2
32
,x1=-
1
2
32
,x2=
2
3
b
=
32
點(diǎn)評(píng):本題考查的是函數(shù)圖象,但若直接利用圖象其實(shí)不易判斷,為此利用了構(gòu)造函數(shù)的方法,利用函數(shù)與導(dǎo)數(shù)知識(shí)求解.要求具有轉(zhuǎn)化、分析解決問(wèn)題的能力.題目立意較高,很好的考查能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)、已知函數(shù)f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數(shù)f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個(gè)函數(shù)g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(1-
a
x
)ex
,若同時(shí)滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個(gè)極大值點(diǎn);
②?x∈(8,+∞),f(x)>0.
則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+lnx
x

(1)如果a>0,函數(shù)在區(qū)間(a,a+
1
2
)
上存在極值,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)x≥1時(shí),不等式f(x)≥
k
x+1
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在D上的函數(shù)f(x)如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.已知函數(shù)f(x)=
1-m•2x1+m•2x

(1)m=1時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)f(x)在[0,1]上是以3為上界的有界函數(shù),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案