設(shè){an}是公比為正數(shù)的等比數(shù)列,a1=2,a3=a2+4.
(1)求{an}的通項(xiàng)公式.
(2)設(shè){bn}是首項(xiàng)為1,公差為2的等差數(shù)列,求{an+bn}的前n項(xiàng)和Sn.

(1)an==2n       (2)Sn=2n+1+n2-2

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列的前項(xiàng)和,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),記,,
 .
(1)若,且對(duì)任意,三個(gè)數(shù)組成等差數(shù)列,求數(shù)列的通項(xiàng)公式.
(2)證明:數(shù)列是公比為的等比數(shù)列的充分必要條件是:對(duì)任意,三個(gè)數(shù)組成公比為的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在無窮數(shù)列中,,對(duì)于任意,都有. 設(shè), 記使得成立的的最大值為.
(1)設(shè)數(shù)列為1,3,5,7,,寫出,的值;
(2)若為等差數(shù)列,求出所有可能的數(shù)列
(3)設(shè),,求的值.(用表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}中,a1=2,an=2-(n≥2,n∈N*).
(1)設(shè)bn,n∈N*,求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè)cn(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1) 為等差數(shù)列的前項(xiàng)和,,求;
(2)在等比數(shù)列中,若,求首項(xiàng)和公比

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足.
(1)求的通項(xiàng)公式;
(2)求的前項(xiàng)和;
(3)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前n項(xiàng)和為,存在常數(shù)A,B,C,使得對(duì)任意正整數(shù)n都成立.
⑴若數(shù)列為等差數(shù)列,求證:3A B+C=0;
⑵若設(shè)數(shù)列的前n項(xiàng)和為,求;
⑶若C=0,是首項(xiàng)為1的等差數(shù)列,設(shè)數(shù)列的前2014項(xiàng)和為P,求不超過P的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正項(xiàng)數(shù)列滿足:,
(1)求通項(xiàng)
(2)若數(shù)列滿足,求數(shù)列的前和.

查看答案和解析>>

同步練習(xí)冊(cè)答案