(2004•黃岡模擬)若f(x)是以5為周期的奇函數(shù)且f(-3)=1,tanα=2,則f(20sinαcosα)=
-1
-1
分析:由二倍角公式及萬能公式可得20sinα•cosα=10sin2α=10×
2tanα
1+tan2α
,結(jié)合奇函數(shù)及5為周期的周期函數(shù)代入可求
解答:解:∵20sinα•cosα=10sin2α=10×
2tanα
1+tan2α
=8
∴f(20sinαcosα)=f(8)=f(3)=-f(-3)=-1
故答案為:-1
點評:本題主要考查了三角函數(shù)中的二倍角公式、萬能公式sin2α=
2tanα
1+tan2α
的應用,還考查了函數(shù)的奇函數(shù)及函數(shù)的周期性的綜合應用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2004•黃岡模擬)如圖,A、B兩點之間有6條網(wǎng)線并聯(lián),它們能通過的最大信息量分別為1,1,2,2,3,4.從中任取三條網(wǎng)線且使每條網(wǎng)線通過最大的信息量.
(I)設選取的三條網(wǎng)線由A到B可通過的信息總量為x,當x≥6時,則保證信息暢通.求線路信息暢通的概率;
(Ⅱ)求選取的三條網(wǎng)線可通過信息總量的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•黃岡模擬)下列四個函數(shù)中,同時具有性質(zhì):①最小正周期為2π;②圖象關(guān)于直線x=
π
3
對稱的一個函數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•黃岡模擬)在復平面內(nèi),設向量
p1
=(
x
 
1
,y1),
p2
=(
x
 
2
,y2)又設復數(shù)z1=
x
 
1
+y1i;z2=
x
 
2
+y2
i(x1,x2,y1,y2∈R),則
p1
p2
等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•黃岡模擬)平面向量
a
=(x,y),
b
=(x2,y2),
c
=(1,1),
d
=(2,2),若
a
c
=
b
d
=1
,則這樣的向量
a
有( 。

查看答案和解析>>

同步練習冊答案