(理)已知f(sinx)=cos2x,則f(cos15°)的值是

A.            B.              C.              D.

解析:f(cos15°)=f(sin75°)=cos(2×75°)=cos150°=-cos30°=.

答案:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)已知函數(shù)f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若滿足地f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是
 

(文)在平面直角坐標(biāo)系xOy中,設(shè)
OM
=(1,
1
2
)
ON
=(0,1)
,動(dòng)點(diǎn)P(x,y)同時(shí)滿足
0≤
OP
OM
≤1
0≤
OP
ON
≤1
則z=x+y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•普陀區(qū)三模)(理)已知函數(shù)f(x)=
sinπxx∈[0,1]
log2011xx∈(1,+∞)
若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是
(2,2012)
(2,2012)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•奉賢區(qū)二模)(理)已知函數(shù)f(x)=
.
sinxcosx
-sinαcosα
.
,g(x)=
.
cosxsinx
sinβcosβ
.
,α,β是參數(shù),x∈R,α∈(-
π
2
π
2
)
,β∈(-
π
2
π
2
)

(1)若α=
π
4
,β=
π
4
,判別h(x)=f(x)+g(x)的奇偶性;
α=-
π
4
,β=
π
4
,判別h(x)=f2(x)+g2(x)的奇偶性;
(2)若α=
π
3
,t(x)=f(x)g(x)是偶函數(shù),求β;
(3)請(qǐng)你仿照問(wèn)題(1)(2)提一個(gè)問(wèn)題(3),使得所提問(wèn)題或是(1)的推廣或是問(wèn)題(2)的推廣,問(wèn)題(1)或(2)是問(wèn)題(3)的特例.(不必證明命題)
將根據(jù)寫出真命題所體現(xiàn)的思維層次和對(duì)問(wèn)題探究的完整性,給予不同的評(píng)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè)Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(duì)(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問(wèn)是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對(duì)一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年周至二中四模理) 已知f(x)=sin(x+),  g(x)=cos(x)  ,則f(x)的圖象

A.與g(x)的圖象相同                                      B.與g(x)的圖象關(guān)于y軸對(duì)稱

C.向左平移個(gè)單位,得到g(x)的圖象         D.向右平移個(gè)單位,得到g(x)的圖象

查看答案和解析>>

同步練習(xí)冊(cè)答案