在等腰直角三角形ABC中,D是斜邊BC的中點,如果AB的長為2,則(
AB
+
AC
)•
AD
的值為
 
分析:求出|
AD
|
,化簡(
AB
+
AC
)•
AD
,然后計算結果即可.
解答:解:由題意|
AB
|=|
AC
|  =2
,|
AD
| =
2
, ∠DAB=45°
,所以(
AB
+
AC
)•
AD
=2
AD
AD
=2×
2
×
2
=4
故答案為:4
點評:本題是基礎題,考查平面向量的數(shù)量積的運算,考查計算能力,常考題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,C=90°,直角邊BC在直線2x+3y-6=0上,頂點A的坐標是(5,4),求邊AB 和AC所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,∠A=
π
2
,AB=6,E為AB的中點,
AC
=3
AD
,則
BD
CE
=_______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,AB=AC=4,點P是邊AB上異于A,B的一點,光線從點P出發(fā),經(jīng)BC,CA發(fā)射后又回到點P(如圖).若光線QR經(jīng)過△ABC的重心(三角形三條中線的交點),則AP=
4
3
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等腰直角三角形ABC中,AC=BC=
6
,在斜邊AB上任取一點P,則CP≤2的概率為
3
3
3
3

查看答案和解析>>

同步練習冊答案