某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

【答案】分析:(1)莖葉圖中共同的數(shù)字是數(shù)字的十位,這是解決本題的突破口,根據(jù)所給的莖葉圖數(shù)據(jù),代入平均數(shù)公式求出結(jié)果;
(2)先由(1)求得的平均數(shù),再利用比例關(guān)系即可推斷該車間12名工人中有幾名優(yōu)秀工人的人數(shù);
(3)設(shè)“從該車間12名工人中,任取2人,恰有1名優(yōu)秀工人”為事件A,結(jié)合組合數(shù)利用概率的計(jì)算公式即可求解事件A的概率.
解答:解:(1)樣本均值為
(2)抽取的6名工人中有2名為優(yōu)秀工人,
所以12名工人中有4名優(yōu)秀工人
(3)設(shè)“從該車間12名工人中,任取2人,恰有1名優(yōu)秀工人”為事件A,
所以
即恰有1名優(yōu)秀工人的概率為
點(diǎn)評(píng):本題主要考查莖葉圖的應(yīng)用,古典概型及其概率計(jì)算公式,屬于容易題.對(duì)于一組數(shù)據(jù),通常要求的是這組數(shù)據(jù)的眾數(shù),中位數(shù),平均數(shù),題目分別表示一組數(shù)據(jù)的特征,考查最基本的知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東)某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省高二上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題

(12分)某車間共有12名工人,需配備兩種型號(hào)的機(jī)器,每臺(tái)A型機(jī)器需2人操作,每天耗電30千瓦時(shí),能生產(chǎn)出價(jià)值4萬元的產(chǎn)品;每臺(tái)B型機(jī)器需3人操作,每天耗電20千瓦時(shí),能生產(chǎn)出價(jià)值3萬元的產(chǎn)品,現(xiàn)每天供應(yīng)車間的電量不多于130千瓦時(shí),問這個(gè)車間如何配備這兩種型號(hào)的機(jī)器,使每天的產(chǎn)值最大?最大產(chǎn)值是多少萬元?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省臨沂十八中高一(下)6月月考數(shù)學(xué)試卷(解析版) 題型:解答題

某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣東省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).
(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案