【題目】已知函數(shù),其中e為自然對(duì)數(shù)的底數(shù).

1)求證:函數(shù)是偶函數(shù);

2)求證:函數(shù)上單調(diào)遞減;

3)求函數(shù)在閉區(qū)間上的最小值和最大值.

【答案】1)證明見(jiàn)解析(2)證明見(jiàn)解析(3)最小值為,最大值為

【解析】

1)利用定義法證明是偶函數(shù),注意定義域的分析;

2)利用定義法證明上單調(diào)遞減,注意函數(shù)單調(diào)性的證明步驟;

3)根據(jù)的單調(diào)性、奇偶性確定出上的最值.

1)易知函數(shù)的定義域?yàn)?/span>R,顯然關(guān)于原點(diǎn)對(duì)稱.

又因?yàn)?/span>,

故根據(jù)偶函數(shù)的定義可知,函數(shù)是偶函數(shù).

2)任取,且設(shè),則

.

又由,得,所以;

易知,

所以,所以.

于是,可得

.

故根據(jù)函數(shù)單調(diào)性的定義,可知函數(shù)上單調(diào)遞減.

3)根據(jù)(1)、(2)知函數(shù)的圖象關(guān)于y軸對(duì)稱,

且在上單調(diào)遞減,在上單調(diào)遞增.

據(jù)此易得函數(shù)在閉區(qū)間上的最小值為,最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{xn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且x1x2=3,x3x2=2.

(1)求數(shù)列{xn}的通項(xiàng)公式;

(2)如圖,在平面直角坐標(biāo)系xOy中,依次連接點(diǎn)P1(x1,1),P(x2,2),…,Pn+1(xn+1n+1)得到折線P1P2Pn+1,求由該折線與直線y=0,xx1,xxn+1所圍成的區(qū)域的面積Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了改善居民的休閑娛樂(lè)活動(dòng)場(chǎng)所,現(xiàn)有一塊矩形草坪如下圖所示,已知:米,米,擬在這塊草坪內(nèi)鋪設(shè)三條小路,要求點(diǎn)的中點(diǎn),點(diǎn)在邊上,點(diǎn)在邊時(shí)上,且.

1)設(shè),試求的周長(zhǎng)關(guān)于的函數(shù)解析式,并求出此函數(shù)的定義域;

2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為元,試問(wèn)如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為進(jìn)一步貫徹落實(shí)“十九”大精神,某高校組織了“歌頌祖國(guó),緊跟黨走”為主題的黨史知識(shí)競(jìng)賽,從參加競(jìng)賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績(jī)分為六段,,,得到如圖所示的頻率分布直方圖.

(1)求圖中的值;

(2)若從競(jìng)賽成績(jī)?cè)?/span>兩個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競(jìng)賽成績(jī)之差的絕對(duì)值不大于分為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性 ;

(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),若函數(shù)有兩個(gè)極值點(diǎn),求

的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù)的圖像在處的切線方程為:

(1)求的值;

(2)若,成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,均為邊長(zhǎng)是2的等邊三角形,平面平面CBE,點(diǎn)O是BE的中點(diǎn)。

(1)求證:;

(2)求直線AB與平面ACE所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=x3+ex-e-x

(1)判斷此函數(shù)的奇偶性,并說(shuō)明理由;

(2)判斷此函數(shù)的單調(diào)性(不需要證明);

3)求不等式f2x-1+f-3)<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是函數(shù)的部分圖象.

1)求函數(shù)的表達(dá)式;

2)把函數(shù)的圖象的周期擴(kuò)大為原來(lái)的兩倍,然后向右平移個(gè)單位,再把縱坐標(biāo)伸長(zhǎng)為原來(lái)的兩倍,最后向上平移一個(gè)單位得到函數(shù)的圖象.若對(duì)任意的,方程在區(qū)間上至多有一個(gè)解,求正數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案