【題目】已知直線 ,和兩點(diǎn)0,1),-1,0),給出如下結(jié)論:

①不論為何值時, 都互相垂直;

②當(dāng)變化時, 分別經(jīng)過定點(diǎn)A0,1)和B-1,0);

③不論為何值時, 都關(guān)于直線對稱;

④如果交于點(diǎn),則的最大值是1;

其中,所有正確的結(jié)論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4.

【答案】C

【解析】對于①,當(dāng)兩條直線分別化為: ,此時兩條直線互相垂直,當(dāng)兩條直線斜率分別為: ,滿足,此時兩條直線互相垂直,因此不論為何值時 都互相垂直,正確
對于②,當(dāng)變化時,代入驗(yàn)證可得: 分別經(jīng)過定點(diǎn),正確;
對于由①可知:兩條直線交點(diǎn)在以為直徑的圓上,不一定在直線,因此關(guān)于直線不一定對稱,不正確
對于,如果交于點(diǎn),由③可知: ,,所以的最大值是1正確.
所有正確結(jié)論的個數(shù)是3.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知曲線C1的極坐標(biāo)方程ρ2cos2θ=8,曲線C2的極坐標(biāo)方程為θ= ,曲線C1 , C2相交于A,B兩點(diǎn).以極點(diǎn)O為原點(diǎn),極軸所在直線為x軸建立平面直角坐標(biāo)系,已知直線l的參數(shù)方程為 (t為參數(shù)).
(1)求A,B兩點(diǎn)的極坐標(biāo);
(2)曲線C1與直線l分別相交于M,N兩點(diǎn),求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;

(2)計算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓和雙曲線的公共焦點(diǎn),是它們的一個公共點(diǎn),且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為(  )

A. B. C. 3 D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地級市共有中學(xué)生,其中有學(xué)生在年享受了“國家精準(zhǔn)扶貧”政策,在享受“國家精準(zhǔn)扶貧”政策的學(xué)生中困難程度分為三個等次:一般困難、很困難、特別困難,且人數(shù)之比為,為進(jìn)一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立“專項(xiàng)教育基金”,對這三個等次的困難學(xué)生每年每人分別補(bǔ)助元、元、元.經(jīng)濟(jì)學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學(xué)生中有會脫貧,脫貧后將不再享受“精準(zhǔn)扶貧”政策,很困難的學(xué)生有轉(zhuǎn)為一般困難學(xué)生,特別困難的學(xué)生中有轉(zhuǎn)為很困難學(xué)生.現(xiàn)統(tǒng)計了該地級市年到年共年的人均可支配年收入,對數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中統(tǒng)計量的值,其中年份時代表年,時代表年,……依此類推,且(單位:萬元)近似滿足關(guān)系式.(年至年該市中學(xué)生人數(shù)大致保持不變)

(1)估計該市年人均可支配年收入為多少萬元?

(2)試問該市年的“專項(xiàng)教育基金”的財政預(yù)算大約為多少萬元?

附:對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學(xué)生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下,觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計這次環(huán)保知識競賽的及格率(分及以上為及格)和平均數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.

(1)設(shè)圓求過2,0的直線關(guān)于圓的距離比的直線方程;

(2)若圓軸相切于點(diǎn)0,3)且直線= 關(guān)于圓的距離比,求此圓的的方程;

(3)是否存在點(diǎn),使過的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的距離比始終相等?若存在,求出相應(yīng)的點(diǎn)點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某玩具所需成本費(fèi)用為P,P=1 000+5xx2,而每套售出的價格為Q,其中Q(x)=a (a,bR),

(1)問:玩具廠生產(chǎn)多少套時,使得每套所需成本費(fèi)用最少?

(2)若生產(chǎn)出的玩具能全部售出,且當(dāng)產(chǎn)量為150套時利潤最大,此時每套價格為30,ab的值.(利潤=銷售收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱錐A﹣BCD的外接球半徑R= ,P,Q分別是AB,BC上的點(diǎn),且滿足 = =5,DP⊥PQ,則該正三棱錐的高為(
A.
B.
C.
D.2

查看答案和解析>>

同步練習(xí)冊答案