【題目】已知函數(shù)y=f (x)= .
(1)求函數(shù)f (x)的圖象在x= 處的切線方程;
(2)求y=f(x)的最大值.
【答案】
(1)解:∵f (x)定義域?yàn)椋?,+∞),∴f′(x)=
∵f ( )=﹣e,∴切點(diǎn)為( ,﹣e)又∵k=f′( )=2e2.
∴函數(shù)y=f (x)在x= 處的切線方程為:y+e=2e2(x﹣ ),
即y=2e2x﹣3e.
(2)解:令f′(x)=0得:x=e
當(dāng)x∈(0,e)時(shí),f′(x)>0,f (x)為增函數(shù);
當(dāng)x∈(e,+∞)時(shí),f′(x)<0,f (x)為減函數(shù).
∴fmax (x)=f (e)=
【解析】(1)先求函數(shù)的定義域,然后求出導(dǎo)函數(shù)f′(x),求出切點(diǎn)坐標(biāo)以及f′( )即為切線的斜率,在根據(jù)點(diǎn)斜式求出切線方程,化成斜截式即可;(2)令f′(x)=0得:x=e,然后將定義域(0,+∞)分成兩部分,分別研究函數(shù)在(0,e)與(e,+∞)上的導(dǎo)數(shù)符號(hào),從而得到函數(shù)的單調(diào)性,從而求出最值.
【考點(diǎn)精析】本題主要考查了函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列四個(gè)命題:
p1:若直線l和平面α內(nèi)的無(wú)數(shù)條直線垂直,則l⊥α;
p2:若f(x)=2x﹣2﹣x , 則x∈R,f(﹣x)=﹣f(x);
p3:若 ,則x0∈(0,+∞),f(x0)=1;
p4:在△ABC中,若A>B,則sinA>sinB.
其中真命題的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若不經(jīng)過(guò)點(diǎn)的直線與交于兩點(diǎn),且直線與直線的斜率之和為,證明:直線的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某池塘中原有一塊浮草,浮草蔓延后的面積y(m2)與時(shí)間t(月)之間的函數(shù)關(guān)系是y=at﹣1(a>0,且a≠1),它的圖象如圖所示.給出以下命題: ①池塘中原有浮草的面積是0.5m2;
②到第7個(gè)月浮草的面積一定能超過(guò)60m2
③浮草每月增加的面積都相等;
④若浮草面積達(dá)到4m2 , 16m2 , 64m2所經(jīng)過(guò)時(shí)間分別為t1 , t2 , t3 , 則t1+t2<t3 , 其中所有正確命題的序號(hào)是( )
A.①②
B.①④
C.②③
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(﹣2)=0,當(dāng)x>0時(shí),xf′(x)﹣f(x)>0,則使得f(x)>0成立的x的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為, 為該橢圓的右焦點(diǎn),過(guò)點(diǎn)任作一直線交橢圓于兩點(diǎn),且的最大值為4.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點(diǎn)為,若直線分別交直線于兩點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos2x﹣sinxcosx﹣sin2x.
(Ⅰ)求函數(shù)f(x)取得最大值時(shí)x的集合;
(Ⅱ) 設(shè)A、B、C為銳角三角形ABC的三個(gè)內(nèi)角,若cosB=,f(C)=﹣,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某賓館有相同標(biāo)準(zhǔn)的床位100張,根據(jù)經(jīng)驗(yàn),當(dāng)該賓館的床價(jià)(即每張床每天的租金)不超過(guò)10元時(shí),床位可以全部租出,當(dāng)床價(jià)高于10元時(shí),每提高1元,將有3張床位空閑.為了獲得較好的效益,該賓館要給床位定一個(gè)合適的價(jià)格,條件是:①要方便結(jié)賬,床價(jià)應(yīng)為1元的整數(shù)倍;②該賓館每日的費(fèi)用支出為575元,床位出租的收入必須高于支出,而且高出得越多越好.若用x表示床價(jià),用y表示該賓館一天出租床位的凈收入(即除去每日的費(fèi)用支出后的收入).
(1)把y表示成x的函數(shù),并求出其定義域;
(2)試確定該賓館將床位定價(jià)為多少時(shí),既符合上面的兩個(gè)條件,又能使凈收入最多?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com