(本題滿分16分,第1小題5分,第2小題6分,第3小題5分)

    已知函數(shù),其中為常數(shù),且

   (1)若是奇函數(shù),求的取值集合A;

   (2)(理)當時,設的反函數(shù)為,且函數(shù)的圖像與的圖像關于對稱,求的取值集合B;

   (文)當時,求的反函數(shù);

   (3)(理)對于問題(1)(2)中的A、B,當時,不等式恒成立,求的取值范圍。

   (文)對于問題(1)中的A,當時,不等式恒成立,求的取值范圍。

 

【答案】

(1)

(2)(理)B={—4}

(文)

(3)(理)x的取值范圍為{1,4}

(文)x的取值范圍為{1,4}

【解析】解:(1)由必要條件,

所以,   ………………2分

下面證充分性,當,

任取

=0恒成立……………………2分

……………………1分

(2)(理)當

互換x,y得………………1分

從而

所以……………………2分

即B={—4} ……………………1分

(文)當a=1時,

其值域是……………………3分

互換x,y

……………………3分

(3)(理)原問題轉(zhuǎn)化為

恒成立

  ……………………2分

則x的取值范圍為{1,4}……………………2分

(文)原問題轉(zhuǎn)化為

恒成立

  ……………………2分

則x的取值范圍為{1,4}……………………2分

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分16分,第一小題8分;第二小題8分)

已知軸正方向的單位向量,設=, =,且滿足.

求點的軌跡方程;

過點的直線交上述軌跡于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市高三第三次月考試題文科數(shù)學 題型:解答題

. (本題滿分16分,第1小題滿分4分,第2小題滿分6分,第3小題滿分6分)

已知公差大于零的等差數(shù)列的前項和為,且滿足,

(1)求數(shù)列的通項公式;

(2)若數(shù)列是等差數(shù)列,且,求非零常數(shù)

(3)若(2)中的的前項和為,求證:

 

查看答案和解析>>

科目:高中數(shù)學 來源:上海市長寧區(qū)2010屆高三第二次模擬考試數(shù)學文 題型:解答題

(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)

在平行四邊形中,已知過點的直線與線段分別相交于點。若。

(1)求證:的關系為;

(2)設,定義在上的偶函數(shù),當,且函數(shù)圖象關于直線對稱,求證:,并求時的解析式;

(3)在(2)的條件下,不等式上恒成立,求實數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(理) 題型:解答題

(本題滿分16分;第(1)小題5分,第(2)小題5分,第(3)小題6分)

、為坐標平面上的點,直線為坐標原點)與拋物線交于點(異于).

(1)       若對任意,點在拋物線上,試問當為何值時,點在某一圓上,并求出該圓方程;

(2)       若點在橢圓上,試問:點能否在某一雙曲線上,若能,求出該雙曲線方程,若不能,說明理由;

(3)       對(1)中點所在圓方程,設、是圓上兩點,且滿足,試問:是否存在一個定圓,使直線恒與圓相切.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(文) 題型:解答題

(本題滿分16分,第一小題8分;第二小題8分)

已知軸正方向的單位向量,設=, =,且滿足.

(1) 求點的軌跡方程;

(2)    過點的直線交上述軌跡于兩點,且,求直線的方程.

 

查看答案和解析>>

同步練習冊答案