已知拋物線C關(guān)于
軸對稱,它的頂點在坐標原點,并且經(jīng)過點
(1)求拋物線C的標準方程
(2)直線
過拋物線的焦點F,與拋物線交于A、B兩點,線段AB的中點M的橫坐標為3,求弦長
以及直線
的方程。
試題分析:(1)依題意設(shè)拋物線方程為:
過
得
拋物線方程為
……4分
(2)
令
當直線
斜率不存在時即方程為:
此時AB中點為F(1,0)不合題意,舍去 ……6分
令直線
方程為:
代入拋物線方程得:
得:
……9分
得
得
,
直線
方程為:
;
……13分
點評:對于弦長問題,只需聯(lián)立方程利用韋達定理及弦長公式求解即可。
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)如圖所示,橢圓
C:
的離心率
,左焦點為
右焦點為
,短軸兩個端點為
.與
軸不垂直的直線
與橢圓C交于不同的兩點
、
,記直線
、
的斜率分別為
、
,且
.
(1)求橢圓
的方程;
(2)求證直線
與
軸相交于定點,并求出定點坐標.
(3)當弦
的中點
落在
內(nèi)(包括邊界)時,求直線
的斜率的取值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
方程為
,左、右焦點分別是
,若橢圓
上的點
到
的距離和等于
.
(Ⅰ)寫出橢圓
的方程和焦點坐標;
(Ⅱ)設(shè)點
是橢圓
的動點,求線段
中點
的軌跡方程;
(Ⅲ)直線
過定點
,且與橢圓
交于不同的兩點
,若
為銳角(
為坐標原點),求直線
的斜率
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
在橢圓
中,
分別是其左右焦點,若
,則該橢圓離心率的取值范圍是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知橢圓
的左、右焦點分別為
,離心率
,
.
(I)求橢圓的標準方程;
(II)過點
的直線
與該橢圓交于
兩點,且
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題12分)直線l:y=kx+1與雙曲線C:
的右支交于不同的兩點A,B
(Ⅰ)求實數(shù)k的取值范圍;
(Ⅱ)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過雙曲線C的右焦點F?若存在,求出k的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知拋物線
到拋物線的準線距離為d
1,到直線
的距離為d
2,則d
1+d
2的最小值是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知直線
與拋物線
相交于
、
兩點,
為拋物線的焦點,若
,則
的值為
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知點
為拋物線
上一點,記點
到
軸距離
,點
到直線
的距離
,則
的最小值為____________.
查看答案和解析>>