直線y=
m
2
x
與圓x2+y2+mx+ny-4=0交于M、N兩點(diǎn),且M、N關(guān)于直線x+y=0對(duì)稱,則弦MN的長(zhǎng)為( 。
分析:由直線與圓兩交點(diǎn)M、N關(guān)于x+y=0對(duì)稱,得到圓心在x+y=0上,且直線的斜率為1,求出m的值,由圓的方程找出圓心坐標(biāo),代入x+y=0中,求出n的值,確定出圓的方程,找出圓心坐標(biāo)與半徑r,利用點(diǎn)到直線的距離公式求出圓心到直線的距離d,再利用垂徑定理及勾股定理即可求出弦MN的長(zhǎng).
解答:解:∵直線與圓的兩交點(diǎn)M、N關(guān)于x+y=0對(duì)稱,
∴直線y=
m
2
x的斜率為1,且圓心在x+y=0上,
m
2
=1,圓心(-
m
2
,-
n
2
)在x+y=0上,即m+n=0,
∴m=2,n=-2,
∴圓的方程化為(x+1)2+(y-1)2=6,直線方程為y=x,
∴圓心到直線的距離d=
2
2
=
2
,r=
6

則弦MN的長(zhǎng)為2
r2-d2
=4.
故選C
點(diǎn)評(píng):此題考查了直線與圓相交的性質(zhì),涉及的知識(shí)有:圓的標(biāo)準(zhǔn)方程,垂徑定理,勾股定理,以及點(diǎn)到直線的距離公式,當(dāng)直線與圓相交時(shí),常常根據(jù)垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長(zhǎng)的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來(lái)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=
m2
x與圓x2+y2+mx+ny-4=0交于M、N兩點(diǎn),且M,N關(guān)于直線x+y=0對(duì)稱,則弦MN的長(zhǎng)為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案