已知命題p:關于x的不等式x2+2ax+4>0對?x∈R恒成立;命題q:函數(shù)y=-(4-2a)x是R上的減函數(shù).若“p∨q”為真命題,“p∧q”為假命題,則實數(shù)a的取值范圍是______.
解析:先簡化命題p、q,構建關于a的關系式.
由x2+2ax+4>0對?x∈R恒成立,得
T△=(2a)2-4×4<0,解得-2<a<2.
所以p:-2<a<2.
由y=-(4-2a)x是R上的減函數(shù),
得4-2a>1,解得a<
3
2

所以q:a<
3
2

由“p∨q”為真,“p∧q”為假知,p與q中必有一真一假,即p真q假或p假q真.
所以
-2<a<2
a≥
3
2
a≤-2或a≥2
a<
3
2

從而得
3
2
≤a<2或a≤-2.
故答案為:[
3
2
,2)∪(-∞,-2].
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題P:關于x的不等式x2+(a-1)x+1≤0的解集為∅,命題q:方程
x2
2
+
y2
a
=1表示焦點在y軸上的橢圓,若命題¬q為真命題,p∨q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:關于x的方程x2-ax+4=0有實根,命題q:關于x函數(shù)y=2x2+ax+4在[3,+∞)上為增函數(shù),若“p或q”為真命題,“p且q”為假命題,則實數(shù)a取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:關于x的不等式x2-2x-a>0解集為R;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.如果“p且q”為假命題,“p或q”為真命題,則實數(shù)a的取值范圍為
[-1,1)∪(
5
2
,+∞)
[-1,1)∪(
5
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“關于x的方程x2-ax+a=0無實根”和命題q:“函數(shù)f(x)=x2-ax+a在區(qū)間[-1,+∞)上單調.如果命題p∨q是假命題,那么,實數(shù)a的取值范圍是(  )
A、(0,4)B、(-∞,2]∪(0,4)C、(-2,0]∪[4,+∞)D、[-2,0)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:關于x的方程x2-2x+a=0有實根,命題q:函數(shù)f(x)=(a+1)x+2是減函數(shù),若p∨q是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案