如果關于x的一元二次方程x2-2(a-3)x-b2+9=0中,a、b分別是兩次投擲骰子所得的點數(shù),則該二次方程有兩個正根的概率P=( 。
A.
1
18
B.
1
9
C.
1
6
D.
13
18
方程的兩根要大于0,由韋達定理得 2(a-3)>0,-b2+9>0 解得a>3,b<3 若b=2,9-b2=5 要使方程有兩個正根,判別式=4(a-3)2-4×5>0 (a-3)2>5,解得,a=6 若b=1,9-b2=8 判別式=4(a-3)2-4×8>0 (a-3)2>8,解得,a=6 a,b只有兩種情況滿足要求:a=6,b=1,2 而投擲骰子所產生的a,b的總的可能組合有:6×6=36 所以有兩個正根的概率是:
2
36
=
1
18

故選A
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2011-2012學年甘肅甘谷一中宏志班選拔考試數(shù)學試卷(解析版) 題型:解答題

若x1、x2是關于一元二次方程ax2+bx+c(a≠0)的兩個根,則方程的兩個根x1、x2和系數(shù)a、b、c有如下關系:x1+x2=-,x1•x2.把它稱為一元二次方程根與系數(shù)關系定理.如果設二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的兩個交點為A(x1,0),B(x2,0).利用根與系數(shù)關系定理可以得到A、B連個交點間的距離為:

AB=|x1-x2|=

參考以上定理和結論,解答下列問題:

設二次函數(shù)y=ax2+bx+c(a>0)的圖象與x軸的兩個交點A(x1,0)、B(x2,0),拋物線的頂點為C,顯然△ABC為等腰三角形.

(1)當△ABC為直角三角形時,求b2-4ac的值;

(2)當△ABC為等邊三角形時,求b2-4ac的值.

 

查看答案和解析>>

同步練習冊答案