已知二項式(
x
-
1
2
3x
)n
的展開式中第四項為常數(shù)項,則n等于( 。
分析:寫出展開式的通項,利用展開式中第四項為常數(shù)項,即可求出n的值.
解答:解:二項式(
x
-
1
2
3x
)n
的展開式的通項為Tr+1=
C
r
n
(
x
)n-r(
1
2
3x
)r
=
C
r
n
(
1
2
)
r
x
n
2
-
5
6
r

∵展開式中第四項為常數(shù)項,
∴r=3時,
n
2
-
5
6
×3
=0
∴n=5
故選C.
點評:本題考查二項式定理的運用,考查展開式的通項,考查學(xué)生的計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a=
6
π
2
cosxdx
,b為二項式(x-
3
6
)3
的展開式的第二項的系數(shù),則復(fù)數(shù)z=a+bi的共軛復(fù)數(shù)是( 。
A、-
1
2
+
3
2
i
B、-
1
2
-
3
2
i
C、
1
2
+
3
2
i
D、
1
2
-
3
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項式(x+
1
2
)
n
的展開式中前三項的系數(shù)成等差數(shù)列.
(1)求n的值;
(2)設(shè)(x+
1
2
)
n
=a0+a1x+a2x2+…+ 
anxn.①求a5的值;②求a0-a1+a2-a3+…+(-1)nan的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知n∈N*,且(x+
1
2
)n
展開式中前三項系數(shù)成等差數(shù)列.
(1)求n;
(2)求展開式中二項式系數(shù)最大的項;
(3)若(x+
1
2
)n=a0+a1(x-
1
2
)+a2(x-
1
2
)2
+…+an(x-
1
2
)n
,求a0+a1+…+an的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列所給命題中,正確的有
③④
③④
(寫出所有正確命題的序號)
①任意的圓錐都存在兩條母線互相垂直;
②在△ABC中,若4sinA+2cosB=1,2sinB+4cosA=3
3
,則∠C=30°或150°;
③關(guān)于x的二項式(2x-
1
x
)4
的展開式中常數(shù)項是24;
④命題P:?x∈R,x2+1≥1;命題:q:?x∈R,x2-x+1≤0,則命題P∧(¬q)是真命題;
⑤已知函數(shù)f(x)=loga(-x2+logax)的定義域是(0,
1
2
)
,則實數(shù)a的取值范圍是[
1
32
,
1
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(
x
+
1
2•
4x
n的展開式中僅有第5項二項式系數(shù)最大,則展開式中的有理項共有
 
項,分別是第
 
項.

查看答案和解析>>

同步練習(xí)冊答案