精英家教網(wǎng)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足2(Sn+1)=an2+an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=2,bn+1=2bn(n∈N*),數(shù)列{cn}滿足cn=
an,n=2k-1
bn,n=2k
(k∈N*)
,數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn;
(3)若數(shù)列Pn=
n2
4
+24n(n∈N*)
,甲同學(xué)利用第(2)問中的Tn,試圖確定T2k-P2k(k∈N*)的值是否可以等于2011?為此,他設(shè)計(jì)了一個(gè)程序(如圖),但乙同學(xué)認(rèn)為這個(gè)程序如果被執(zhí)行會(huì)是一個(gè)“死循環(huán)”(即程序會(huì)永遠(yuǎn)循環(huán)下去,而無法結(jié)束),你是否同意乙同學(xué)的觀點(diǎn)?請(qǐng)說明理由.
分析:(1)由題意及2(Sn+1)=an2+an(n∈N*),令n=1,求得數(shù)列的首項(xiàng),在利用已知數(shù)列的前n項(xiàng)和求出數(shù)列的通項(xiàng);
(2)數(shù)列{bn}滿足b1=2,bn+1=2bn(n∈N*),可以求出數(shù)列bn的通項(xiàng)公式,再有數(shù)列{cn}滿足cn=
an,n=2k-1
bn,n=2k
(k∈N*)
,利用分組求和求出數(shù)列cn的前n項(xiàng)的和;
(3)由題意及(2)可知n為偶數(shù),即dn=A-B=Tn-Pn=
4
3
2n-
47
2
n-
4
3
,由于dn+2-dn=2n+2-47分析該式即可.
解答:解:(1)n=1,2(S1+1)=a12+a1?a1=2.
n≥2,2(Sn+1)=an2+an
2(Sn-1+1)=an-12+an-1
,
兩式相減,得2an=an2-an-12+an-an-1
∵an>0,∴an-an-1=1.
?{an}為等差數(shù)列,首項(xiàng)為2,公差為1
∴an=n+1(n∈N*).
(2)∵{bn}是首項(xiàng)為2,公比為2的等比數(shù)列,
∴bn=2n(n∈N*),
n為偶數(shù)時(shí),Tn=(a1+a3++an-1)+(b2+b4++bn
=
(a1+an-1)•
n
2
2
+
4(1-4
n
2
)
1-4
=
n2+2n
4
+
4
3
(2n-1)

n為奇數(shù)時(shí),Tn=Tn-1+cn,
=
(n-1)2+2(n-1)
4
+
4
3
(2n-1-1)+(n+1)
=
n2+4n+3
4
+
1
3
2n+1-
4
3
,
(3)∵n=2k為偶數(shù),
∴Tn=
n2+2n
4
+
4
3
(2n-1)
,Pn=
n2
4
+24n

設(shè)dn=A-B=Tn-Pn=
4
3
2n-
47
2
n-
4
3
,
∵dn+2-dn=2n+2-47,
∴d4<d6<d8<d10<2011<d12<d14<…,且d2<2011
∴dn≠2011,即Tn-Pn≠2011(n為偶數(shù)),
∴乙同學(xué)的觀點(diǎn)正確.
點(diǎn)評(píng):此題考查了已知數(shù)列的前n項(xiàng)和求數(shù)列的通項(xiàng),等比數(shù)列的定義及通項(xiàng)公式,還考查了學(xué)生分類討論的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)單調(diào)遞增函數(shù)f(x)的定義域?yàn)椋?,+∞),且對(duì)任意的正實(shí)數(shù)x,y有f(xy)=f(x)+f(y),且f(
1
2
)=-1

(1)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列{an}滿足:f(sn)=f(an)+f(an+1)-1其中Sn為數(shù)列{an}的前n項(xiàng)和,求數(shù)列{an}的通項(xiàng)公式;
(2)在(1)的條件下,是否存在正數(shù)M使下列不等式:2n•a1a2…an≥M
2n+1
(2a1-1)(2a2-1)…(2an-1)
對(duì)一切n∈N*成立?若存在,求出M的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項(xiàng)和,對(duì)任意n∈N,有2Sn=2p
a
2
n
+pan-p(p∈R).
(1)求常數(shù)p的值;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且Sn,an
1
2
成等差數(shù)列,
(1)求a1,a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若bn=4-2n(n∈N*),設(shè)cn=
bn
an
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且點(diǎn)(an,Sn)在函數(shù)y=
1
2
x2+
1
2
x-3
的圖象上,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=nan(n∈N*),求證:
1
b1
+
1
b2
+…+
1
bn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•長寧區(qū)二模)已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和sn滿足s1>1,且6sn=(an+1)(an+2)(n為正整數(shù)).
(1)求{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=
an,n為偶數(shù)
2an,n為奇數(shù)
,求Tn=b1+b2+…+bn;
(3)設(shè)Cn=
bn+1
bn
,(n為正整數(shù))
,問是否存在正整數(shù)N,使得n>N時(shí)恒有Cn>2008成立?若存在,請(qǐng)求出所有N的范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案