如圖6,四棱柱的所有棱長都相等,,四邊形和四邊形為矩形.
(1)證明:底面;
(2)若,求二面角的余弦值.
(1) 詳見解析 (2)
解析試題分析:(1)要證明線面垂直,只需要在面內(nèi)找到兩條相交的線段與之垂直即可,即證明與垂直,首先利用四棱柱所有棱相等,得到上下底面為菱形,進而得到均為中點,得到三者相互平行,四邊形均為矩形與平行相結(jié)合即可得到與垂直,進而證明線面垂直.
(2)要求二面角,此問可以以以為坐標(biāo)原點,所在直線分別為軸,軸,軸建立三維直角坐標(biāo)系,利用空間向量的方法得到二面角的余弦值,在此說明第一種方法,做出二面角的平面角, 過作的垂線交于點,連接.利用(1)得到,在利用四邊形為菱形,對角線相互垂直,兩個垂直關(guān)系即可得到垂直于平面,進而得到,結(jié)合得到線面垂直,說明角即為哦所求二面角的平面角,設(shè)四棱柱各邊長為,利用勾股定理求出相應(yīng)邊長即可得到角的余弦值,進而得到二面角的余弦值.
(1)證明:四棱柱的所有棱長都相等
四邊形和四邊形均為菱形
分別為中點
四邊形和四邊形為矩形
且
又且底面
底面.
(2)法1::過作的垂線交于點,連接.不妨設(shè)四棱柱的邊長為.
底面且底面面
科目:高中數(shù)學(xué) 來源: 題型:填空題
點A(x,2,3)與點B(-1,y,z)關(guān)于坐標(biāo)平面yOz對稱,則x=_____,y=______,z=______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在棱長為a的正方體ABCD-A1B1C1D1中,G為△BC1D的重心,
(1)求證:A1、G、C三點共線;
(2)求證:A1C⊥平面BC1D;
(3)求點C到平面BC1D的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在三棱柱中,平面,,為棱上的動點,.
⑴當(dāng)為的中點,求直線與平面所成角的正弦值;
⑵當(dāng)的值為多少時,二面角的大小是45.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的多面體中,底面BCFE是梯形,EF//BC,又EF平面AEB,AEEB,AD//EF,BC=2AD=4,EF=3,AE=BE=2,G為BC的中點.
(1)求證:AB//平面DEG;
(2)求證:BDEG;
(3)求二面角C—DF—E的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知四邊形ABCD滿足,E是BC的中點,將△BAE沿AE翻折成,F(xiàn)為的中點.
(1)求四棱錐的體積;
(2)證明:;
(3)求面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
在空間直角坐標(biāo)系中,已知點A(1,0,2),B(1,—3,1),點M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com