設(shè)一個(gè)焦點(diǎn)為,且離心率的橢圓上下兩頂點(diǎn)分別為,直線交橢圓于兩點(diǎn),直線與直線交于點(diǎn).
(1)求橢圓的方程;
(2)求證:三點(diǎn)共線.
(1)(2)詳見(jiàn)解析.
解析試題分析:(1)利用橢圓的定義和幾何性質(zhì);(2)直線與圓錐曲線相交問(wèn)題,可以設(shè)而不求,聯(lián)立直線與橢圓方程,利用韋達(dá)定理結(jié)合題目條件來(lái)證明.
試題解析:(1)由題知,,∴,3分
∴橢圓.4分
(2) 設(shè)點(diǎn),由(1)知
∴直線的方程為,∴.5分
∴,,8分[來(lái)源:Z,xx,k.Com]
由方程組
化簡(jiǎn)得:,,.
10分
∴,
∴三點(diǎn)共線.12分
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程;2.直線與圓錐曲線相交問(wèn)題;3.韋達(dá)定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知A,B,C是橢圓W:+y2=1上的三個(gè)點(diǎn),O是坐標(biāo)原點(diǎn).
(1)當(dāng)點(diǎn)B是W的右頂點(diǎn),且四邊形OABC為菱形時(shí),求此菱形的面積;
(2)當(dāng)點(diǎn)B不是W的頂點(diǎn)時(shí),判斷四邊形OABC是否可能為菱形,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知F1,F2分別為橢圓C1:=1(a>b>0)的上下焦點(diǎn),其中F1是拋物線C2:x2=4y的焦點(diǎn),點(diǎn)M是C1與C2在第二象限的交點(diǎn),且|MF1|=.
(1)試求橢圓C1的方程;
(2)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A,B兩點(diǎn),若橢圓上一點(diǎn)P滿足,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,左右焦點(diǎn)分別為,且.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)的直線與橢圓相交于兩點(diǎn),且,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知點(diǎn),是動(dòng)點(diǎn),且的三邊所在直線的斜率滿足.
(1)求點(diǎn)的軌跡的方程;
(2)若是軌跡上異于點(diǎn)的一個(gè)點(diǎn),且,直線與交于點(diǎn),問(wèn):是否存在點(diǎn),使得和的面積滿足?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓,若橢圓的右頂點(diǎn)為圓的圓心,離心率為.
(1)求橢圓C的方程;
(2)若存在直線,使得直線與橢圓分別交于兩點(diǎn),與圓分別交于兩點(diǎn),點(diǎn)在線段上,且,求圓的半徑的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線的方程為.
(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線交于點(diǎn),以為直徑的圓記為. ①若恰好是橢圓的上頂點(diǎn),求截直線所得的弦長(zhǎng);
②設(shè)與直線交于點(diǎn),試證明:直線與軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線的頂在坐標(biāo)原點(diǎn),焦點(diǎn)到直線的距離是
(1)求拋物線的方程;
(2)若直線與拋物線交于兩點(diǎn),設(shè)線段的中垂線與軸交于點(diǎn) ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左、右焦點(diǎn)分別為、,為原點(diǎn).
(1)如圖1,點(diǎn)為橢圓上的一點(diǎn),是的中點(diǎn),且,求點(diǎn)到軸的距離;
(2)如圖2,直線與橢圓相交于、兩點(diǎn),若在橢圓上存在點(diǎn),使四邊形為平行四邊形,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com