(12分)已知,命題函數(shù)上單調(diào)遞減,命題曲線軸交于不同的兩點(diǎn),若為假命題,為真命題,求實(shí)數(shù)的取值范圍。

 

【答案】

【解析】解:為真:;……2分;為真:………4分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052405361289061448/SYS201205240537054218616610_DA.files/image007.png">為假命題,為真命題,所以命題一真一假……6分

(1)當(dāng)…………… 8分

(2)當(dāng)…………10分

綜上,的取值范圍是…………………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題:
①函數(shù)f(x)=
x,x≥0
-x,x<0
為偶函數(shù);
②定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是單調(diào)減函數(shù),在區(qū)間(0,+∞)上也是單調(diào)減函數(shù),則函數(shù)f(x)在R上是單調(diào)減函數(shù);
③函數(shù)f(x)=loga(x-1)+3的圖象一定過定點(diǎn);
④函數(shù)y=|3-x2|的圖象和函數(shù)y=a的圖象的公共點(diǎn)個(gè)數(shù)為m,則m的值不可能是1.
其中正確命題的序號(hào)為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:
①函數(shù)y=sin(
π
4
-2x)
的單增區(qū)間是[kπ-
π
8
,kπ+
8
](k∈Z)
;
②已知|
a
|=|
b
|=2,
a
b
的夾角為
π
3
,則
a
+
b
a
上的投影為3;
③函數(shù)y=f(x+1)與y=f-1(x)-1的圖象關(guān)于直線x-y=0對(duì)稱;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
處取得最小值,則f(
2
-x)=-f(x)
;
則真命題的序號(hào)是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給定下列命題:
①函數(shù)y=sin(
π
4
-2x)
的單增區(qū)間是[kπ-
π
8
,kπ+
8
](k∈Z)
;
②已知|
a
|=|
b
|=2,
a
b
的夾角為
π
3
,則
a
+
b
a
上的投影為3;
③函數(shù)y=f(x)與y=f-1(x)-1的圖象關(guān)于直線x-y+1=0對(duì)稱;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
處取得最小值,則f(
2
-x)=-f(x)

⑤若sinx+siny=
1
3
,則siny-cos2x
的最大值為
4
3

則真命題的序號(hào)是
①②③④
①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的個(gè)數(shù)為
1
1
 
①若0<a<1,則函數(shù)f(x)=loga(x+5)的圖象不經(jīng)過第三象限;
②已知函數(shù)y=f(x-1)定義域是[-2,3],則y=f(2x-1)的定義域是[-1,3];
③函數(shù)y=
x2+2x-3
的單調(diào)減區(qū)間是(-∞,-1)
④已知集合M={x|x+y=2},N={y|y=x2},那么M∩N=Φ;
⑤已知函數(shù)f(x)是定義在R上的不恒為0的函數(shù),且對(duì)于任意的a,b∈R,都有f(ab)=af(b)+bf(a),則函數(shù)f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=logax(0<a≠1)的反函數(shù)y=f-1(x),給出關(guān)于f(x)與f-1(x)的四個(gè)命題:其中正確命題的序號(hào)是
①②③
①②③

①兩個(gè)函數(shù)必有相同的單調(diào)性;
②當(dāng)a>1時(shí),兩個(gè)函數(shù)的圖象沒有交點(diǎn);
③若兩個(gè)函數(shù)的圖象有交點(diǎn),交點(diǎn)一定在y=x上;
④兩個(gè)函數(shù)圖象有交點(diǎn)的充分不必要條件為0<a<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案