已知曲線,曲線,若當(dāng)時(shí),曲線在曲線的下方,則實(shí)數(shù)的取值范圍是    
.
,
,所以f(x)在區(qū)間[-2,2]上是增函數(shù),所以
當(dāng)x=2時(shí),f(x)取得最大值,最大值為.根據(jù)題意
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,為坐標(biāo)原點(diǎn).
(Ⅰ)過點(diǎn)作兩相互垂直的弦,設(shè)的橫坐標(biāo)為,用表示△的面積,并求△面積的最小值;
(Ⅱ)過拋物線上一點(diǎn)引圓的兩條切線,分別交拋物線于點(diǎn), 連接,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,橢圓的焦點(diǎn)在軸上,左、右頂點(diǎn)分別為、,上頂點(diǎn)為,拋物線、分別以為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)相交于直線上一點(diǎn).
(Ⅰ)求橢圓及拋物線、的方程;
(Ⅱ)若動(dòng)直線與直線垂直,且與橢圓交于不同的兩點(diǎn)、,已知點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線),焦點(diǎn)為,直線 交拋物線、兩點(diǎn),是線段的中點(diǎn),過軸的垂線交拋物線于點(diǎn)
(1)若拋物線上有一點(diǎn)到焦點(diǎn)的距離為,求此時(shí)的值;
(2)是否存在實(shí)數(shù),使是以為直角頂點(diǎn)的直角三角形?若存在,求出
的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)F(1,0),點(diǎn)M在x軸上,點(diǎn)P在y軸上,且
(1)當(dāng)點(diǎn)P在y軸上運(yùn)動(dòng)時(shí),求點(diǎn)N的軌跡C的方程;
(2)設(shè)是曲線C上的點(diǎn),且成等差數(shù)列,當(dāng)AD的垂直平分線與x軸交于點(diǎn)E(3,0)時(shí),求點(diǎn)B的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn).
(1)若拋物線的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;
(2)對(duì)橢圓C,若直線L交y軸于點(diǎn)M,且,當(dāng)m變化時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知B(-6,0),C(6,0)是三角形ABC的兩個(gè)頂點(diǎn),內(nèi)角A、B、C滿足,求頂點(diǎn)A運(yùn)動(dòng)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知點(diǎn)P在曲線C1上,點(diǎn)Q在曲線C2:(x-5)2+y2=1上,點(diǎn)R在曲線C3:(x+5)2+y2=1上,則 | PQ |-| PR | 的最大值是
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn),直線為平面上的動(dòng)點(diǎn),過點(diǎn)作直線的垂線,垂足為,且,動(dòng)點(diǎn)的軌跡為,已知圓過定點(diǎn),圓心在軌跡上運(yùn)動(dòng),且圓軸交于、兩點(diǎn),設(shè),,則的最大值為(  ▲  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案