(2011•浙江模擬)已知點(diǎn)F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABE是直角三角形,則該雙曲線的離心率e為( 。
分析:利用雙曲線的對稱性及直角三角形,可得∠AEF=45°,從而|AF|=|EF|,求出|AF|,|EF|得到關(guān)于a,b,c的等式,即可求出離心率的值.
解答:解:∵△ABE是直角三角形,∴∠AEB為直角
∵雙曲線關(guān)于x軸對稱,且直線AB垂直x軸
∴∠AEF=∠BEF=45°
∴|AF|=|EF|
∵F為左焦點(diǎn),設(shè)其坐標(biāo)為(-c,0)
∴|AF|=
b2
a

∴|EF|=a+c
b2
a
=a+c
∴c2-ac-2a2=0
∴e2-e-2=0
∵e>1,
∴e=2
故選B.
點(diǎn)評:本題考查雙曲線的對稱性、考查雙曲線的三參數(shù)關(guān)系:c2=a2+b2、考查雙曲線的離心率,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)已知△ABC中,AB=AC=4,BC=4
3
,點(diǎn)D為BC邊的中點(diǎn),點(diǎn)P為BC邊所在直線上的一個動點(diǎn),則
AP
AD
滿足( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)數(shù)列{an}滿足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差數(shù)列,求其通項(xiàng)公式;
(Ⅱ)若{an}滿足a1=2,Sn為{an}的前n項(xiàng)和,求S2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)已知A、B是兩個不同的點(diǎn),m、n是兩條不重合的直線,α、β是兩個不重合的平面,則①m?α,A∈m⇒A∈α;②m∩n=A,A∈α,B∈m⇒B∈α;③m?α,n?β,m∥n⇒α∥β;④m?α,m⊥β⇒α⊥β.其中真命題為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浙江模擬)將A,B,C,D,E五種不同的文件放入編號依次為1,2,3,4,5,6,7的七個抽屜內(nèi),每個抽屜至多放一種文件,若文件A,B必須放入相鄰的抽屜內(nèi),文件C,D也必須放在相鄰的抽屜內(nèi),則文件放入抽屜內(nèi)的滿足條件的所有不同的方法有( 。

查看答案和解析>>

同步練習(xí)冊答案