【答案】
分析:(1)首先利用數(shù)列{a
n}的前n項(xiàng)積T
n與通項(xiàng)之間的關(guān)系分類討論寫出相鄰項(xiàng)滿足的關(guān)系式,然后兩式作商,再利用
,利用作差法即可獲得數(shù)列{b
n}是等差數(shù)列.由此可以求的數(shù)列{b
n}的通項(xiàng)公式,進(jìn)而求得Tn然后求得數(shù)列{a
n}的通項(xiàng)公式;
(2)S
n=T
12+T
22+…+T
n2=
,再進(jìn)行放縮可證.
解答:解:(1)∵T
n=1-a
n(n∈N
*).
,∴
,∴
∵
,∴b
n-b
n-1=1,∵T
n=1-a
n,∴
,∴
,∴數(shù)列{b
n}是以2為首項(xiàng),以1為公差的等差數(shù)列,∴b
n=n+1,∴
,∴
(2)S
n=T
12+T
22+…+T
n2=
∴
當(dāng)n≥2時(shí),=
當(dāng)n=1時(shí),
∴S
n≤a
n-
,∴a
n+1-
<S
n≤a
n-
.
點(diǎn)評(píng):本題考查的是數(shù)列與不等式的綜合類問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了構(gòu)造思想、放縮法解決不等式的證問(wèn)題.