如圖,點(diǎn)C是以AB為直徑的圓上的一點(diǎn),直角梯形BCDE所在平面與圓O所在平面垂直,且DEBC,DCBC,DEBC.

(1)證明:EO∥平面ACD;
(2)證明:平面ACD⊥平面BCDE.
(1)見解析(2)見解析
(1)如圖,取BC的中點(diǎn)M,連結(jié)OM、ME.

在△ABC中,OAB的中點(diǎn),MBC的中點(diǎn),∴OMAC
在直角梯形BCDE中,DEBC,且DEBCCM
∴四邊形MCDE為平行四邊形,∴EMDC,
∴面EMO∥面ACD,
又∵EO?面EMO,
EO∥面ACD.
(2)∵C在以AB為直徑的圓上,∴ACBC,
又∵面BCDE⊥面ABC,面BCDE∩面ABCBC
AC⊥面BCDE,
又∵AC?面ACD
∴面ACD⊥面BCDE.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在矩形ABCD中,AB=a,BC=a,以對(duì)角線AC為折線將直角三角形ABC向上翻折到三角形APC的位置(B點(diǎn)與P點(diǎn)重合),P點(diǎn)在平面ACD上的射影恰好落在邊AD上的H處.

(1)求證:PA⊥CD;
(2)求直線PC與平面ACD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知l,m是兩條不同的直線,α、β是兩個(gè)不同的平面,有下列四個(gè)命題:
①若lβ,且α⊥β,則l⊥α;
②若l⊥β,且α∥β,則l⊥α;
③若l⊥β,且α⊥β,則l∥α;
④若α∩β=m,且l∥m,則l∥α.
則所有正確的命題是________.(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在三棱錐A-BCD中,E,F(xiàn),G,H分別是棱AB,BC,CD,DA的中點(diǎn),則

(1)當(dāng)AC,BD滿足條件________時(shí),四邊形EFGH為菱形;
(2)當(dāng)AC,BD滿足條件________時(shí),四邊形EFGH是正方形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平行六面體ABCDA1B1C1D1中,既與AB共面也與CC1共面的棱的條數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在空間,下列命題正確的是(  )
A.平行直線的平行投影重合
B.平行于同一直線的兩個(gè)平面平行
C.垂直于同一平面的兩個(gè)平面平行
D.垂直于同一平面的兩條直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

a,b,c是三條直線,α,β是兩個(gè)平面,b?α,c?α,則下列命題不成立的是(  )
A.若α∥β,c⊥α,則c⊥β
B.“若b⊥β,則α⊥β”的逆命題
C.若a是c在α內(nèi)的射影,a⊥b,則b⊥c
D.“若b∥c,則c∥α”的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)l,m,n為三條不同的直線,α,β為兩個(gè)不同的平面,下列命題中正確的個(gè)數(shù)是(  )
①若l⊥α,m∥β,α⊥β,則l⊥m;
②若m?α,n?α,l⊥m,l⊥n,則l⊥α;
③若l∥m,m∥n,l⊥α,則n⊥α;
④若l∥m,m⊥α,n⊥β,α∥β,則l∥n.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在棱長(zhǎng)為2的正方體ABCDA1B1C1D1中,E為BC的中點(diǎn),點(diǎn)P在線段D1E上,點(diǎn)P到直線CC1的距離的最小值為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案