如圖,設M點是圓C:x2+(y-4)2=4上的動點,過點M作圓O:x2+y2=18的兩條切線,切點分別為A,B,切線MA,MB分別交x軸于D,E兩點。
(1)求四邊形MAOB面積的最小值;
(2)是否存在點M,使得線段DE被圓C在點M處的切線平分?若存在,求出點M的縱坐標;若不存在,說明理由。

解:(1)面積最小值為;
(2)設存在點M(x0,y0)滿足條件,
設過點M且與圓O相切的直線方程為:
則由題意得,,化簡得:,
設直線MA,MB的斜率分別為k1,k2,則
圓C在點M處的切線方程為,
令y=0,得切線與x軸的交點坐標為,
又得D,E的坐標分別為,
由題意知,
用韋達定理代入可得,,與聯(lián)立,得
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右頂點,M是橢圓上異于A,B的任意一點,若橢圓C的離心率為
1
2
,且右準線l的方程為x=4.
(1)求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交直線MB于點Q,試證明:直線PQ與x軸的交點R為定點,并求出R點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,A,B是橢圓C:數(shù)學公式的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若數(shù)學公式,m=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

科目:高中數(shù)學 來源:《圓錐曲線與方程》2013年高三數(shù)學一輪復習單元訓練(北京郵電大學附中)(解析版) 題型:解答題

如圖,A,B是橢圓C:的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準線l的方程為x=m.
(1)若,m=4,求橢圓C的方程;
(2)設直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

同步練習冊答案