若f(x)是偶函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x-1,則不等式f(x-1)<0的解集是


  1. A.
    {x|-1<x<0}
  2. B.
    {x|x<0或1<x<2}
  3. C.
    {x|0<x<2}
  4. D.
    {x|1<x<2}
C
分析:根據(jù)函數(shù)f(x)是偶函數(shù),且給出了x∈[0,+∞)時(shí)的解析式,畫(huà)出函數(shù)y=f(x-1)的圖象,由圖象可得不等式f(x-1)<0的解集.
解答:因?yàn)楹瘮?shù)y=f(x)是偶函數(shù),且當(dāng)x∈[0,+∞)時(shí),f(x)=x-1,
所以函數(shù)y=f(x-1)的圖象如圖,

則滿(mǎn)足f(x-1)<0的解集是{x|0<x<2}.
故選C.
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性,考查了函數(shù)的圖象平移,由圖象求得不等式的解集,考查了屬性結(jié)合思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

18、設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(Ⅰ)若f(x)是偶函數(shù),試求a的值;
(Ⅱ)在(Ⅰ)的條件下,求f(x)的最小值;
(Ⅲ)王小平同學(xué)認(rèn)為:無(wú)論a取何實(shí)數(shù),函數(shù)f(x)都不可能是奇函數(shù).
你同意他的觀點(diǎn)嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2-|x-a|+1,x∈R.
(1)若f(x)是偶函數(shù),試求a的值;
(2)在(1)的條件下,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+(m-1)x+m,(m∈R)
(1)若f(x)是偶函數(shù),求m的值.
(2)設(shè)g(x)=
f(x)
x
,x∈[
1
4
,4],求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)在定義域D內(nèi)某區(qū)間I上是增函數(shù),而y=
f(x)x
在I上是減函數(shù),則稱(chēng)y=f(x)在I上是“弱增函數(shù)”.已知f(x)=x2+(cotθ-1)x+b(θ、b是常數(shù),b>0).
(1)若f(x)是偶函數(shù),求θ、b應(yīng)滿(mǎn)足的條件;
(2)當(dāng)cotθ≥1時(shí),f(x)在(0,1]上是否是“弱增函數(shù)”,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x3+ax2+x的導(dǎo)函數(shù)是f′(x),若f′(x)是偶函數(shù),則實(shí)數(shù)a=
0
0

查看答案和解析>>

同步練習(xí)冊(cè)答案