(2013•南充一模)設(shè)
OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0)(a>0,b>0,O為坐標(biāo)原點(diǎn)),若A、B、C三點(diǎn) 共線,則
2
a
+
1
b
的最小值是( 。
分析:由題意可得
AB
=K•
AC
,即
OB
-
OA
=K(
OC
-
OA
),K為常數(shù),化簡(jiǎn)可得2a+b=1.根據(jù)
2
a
+
1
b
=4+1+
2b
a
+
2a
b
,利用基本不等式求得它的最小值.
解答:解:由題意可得
AB
=K•
AC
,即
OB
-
OA
=K(
OC
-
OA
),K為常數(shù).
即(a-1,1)=K•(-b-1,2),∴a-1=-bK-K,1=2K.
解得 K=
1
2
,2a+b=1.
再由a>0,b>0,
2
a
+
1
b
=
4a+2b
a
+
2a+b
b
=4+1+
2b
a
+
2a
b
≥5+2
2b
a
2a
b
=9,
當(dāng)且僅當(dāng)
2b
a
=
2a
b
時(shí),取等號(hào),即
2
a
+
1
b
的最小值是9,
故選D.
點(diǎn)評(píng):本題主要考查兩個(gè)向量共線的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,基本不等式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南充一模)函數(shù)y=loga(|x|+1)(a>1)的圖象大致是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南充一模)執(zhí)行如圖所示的程序框圖,則輸出的S的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南充一模)某投資商到一開(kāi)發(fā)區(qū)投資72萬(wàn)元建起一座蔬菜加工廠,第一年共支出12萬(wàn)元,以后每年支出增加4萬(wàn)元,從第一年起每年蔬菜銷售收入50萬(wàn)元.設(shè)f(n)表示前n年的純利潤(rùn)總和(f(n)=前n年的總收入-前n年的總支出-投資額).
(1)該廠從第幾年開(kāi)始盈利?
(2)若干年后,投資商為開(kāi)發(fā)新項(xiàng)目,對(duì)該廠有兩種處理方法:①年平均純利潤(rùn)達(dá)到最大時(shí),以48萬(wàn)元出售該廠;②純利潤(rùn)總和達(dá)到最大時(shí),以16萬(wàn)元出售該廠,問(wèn)哪種方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南充一模)對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d,定義y=f″(x)是函數(shù)y=f′(x)的導(dǎo)函數(shù).若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn):任何一個(gè)三次函數(shù)既有拐點(diǎn),又有對(duì)稱中心,且拐點(diǎn)就是對(duì)稱中心.根據(jù)這一發(fā)現(xiàn),對(duì)于函數(shù)g(x)=
1
3
x3-
1
2
x2+3x+
1
12
+
1
x-
1
2
,則g(
1
2013
)+
g(
2
2013
)+
g(
3
2013
)+
…+g(
2012
2013
)
的值為
3018
3018

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南充一模)已知全集U=R,集合A={x|0<2x<1},B={x|log3x>0},則A∩(?UB)=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案